Chencheng Shi, Ping Hu, Weiguo Fan and Liangfei Qiu
Users' knowledge contribution behaviors are critical for online Q&A communities to thrive. Well-organized question threads in online Q&A communities enable users to clearly read…
Abstract
Purpose
Users' knowledge contribution behaviors are critical for online Q&A communities to thrive. Well-organized question threads in online Q&A communities enable users to clearly read existing answers and their evaluations before contributing. Based on the social comparison and peer influence literature, the authors examine peer influence on the informativeness of knowledge contributions in competitive settings. The authors also consider three levels of moderating factors concerning individuals' perception of competitiveness: question level, thread level and contributor level.
Design/methodology/approach
The authors collected data from one of the largest online Q&A communities in China. The hypotheses were validated using hierarchical linear models with cross-classified random effects. The generalized propensity score weighting method was employed for the robustness check.
Findings
The authors demonstrate the peer influence due to social comparison concerns among knowledge contribution behaviors in the same question thread. If more prior knowledge contributors choose to contribute long answers in the question thread, the subsequent contributions are more informative. This peer influence is stronger for factual questions and questions with higher popularity of answering but weaker in recommendation-type and well-answered questions and for contributors with higher social status.
Originality/value
This research provides a new cue of peer influence on online UGC contributions in competitive settings initiated by social comparison concerns. Additionally, the authors identify three levels of moderating factors (question level, thread level and contributor level) that are specific to online Q&A settings and are related to a contributor's perception of competitiveness, which affect the direct effect of peer influence on knowledge contributions. Rather than focus on motivation and quality evaluation, the authors concentrate on the specific content of online knowledge contributions. Peer influence here is not based on an actual acquaintance or a following relationship but on answering the same question. The authors also illustrate the competitive peer influence in subjective and personalized behaviors in online UGC communities.
Details
Keywords
Bin Li, Shoukun Wang, Jinge Si, Yongkang Xu, Liang Wang, Chencheng Deng, Junzheng Wang and Zhi Liu
Dynamically tracking the target by unmanned ground vehicles (UGVs) plays a critical role in mobile drone recovery. This study aims to solve this challenge under diverse random…
Abstract
Purpose
Dynamically tracking the target by unmanned ground vehicles (UGVs) plays a critical role in mobile drone recovery. This study aims to solve this challenge under diverse random disturbances, proposing a dynamic target tracking framework for UGVs based on target state estimation, trajectory prediction, and UGV control.
Design/methodology/approach
To mitigate the adverse effects of noise contamination in target detection, the authors use the extended Kalman filter (EKF) to improve the accuracy of locating unmanned aerial vehicles (UAVs). Furthermore, a robust motion prediction algorithm based on polynomial fitting is developed to reduce the impact of trajectory jitter caused by crosswinds, enhancing the stability of drone trajectory prediction. Regarding UGV control, a dynamic vehicle model featuring independent front and rear wheel steering is derived. Additionally, a linear time-varying model predictive control algorithm is proposed to minimize tracking errors for the UGV.
Findings
To validate the feasibility of the framework, the algorithms were deployed on the designed UGV. Experimental results demonstrate the effectiveness of the proposed dynamic tracking algorithm of UGV under random disturbances.
Originality/value
This paper proposes a tracking framework of UGV based on target state estimation, trajectory prediction and UGV predictive control, enabling the system to achieve dynamic tracking to the UAV under multiple disturbance conditions.