Search results
1 – 10 of 10Albert Zajdel, Cezary Szczepański, Maciej Filipowicz, Mariusz Krawczyk and Michal Welcer
The paper presents the results of the final phase of the project, namely flight tests, aimed at developing a stabilisation system utilizing trim tabs for the PZL-130 Orlik…
Abstract
Purpose
The paper presents the results of the final phase of the project, namely flight tests, aimed at developing a stabilisation system utilizing trim tabs for the PZL-130 Orlik turboprop military trainer aircraft.
Design/methodology/approach
The proposed flight stabilisation system was developed using modern techniques of model-based design, automatic code generation and software and hardware-in-the-loop testing. The project progressed to the flight testing stage, enabling the assessment of the control system’s quality and its final calibration.
Findings
Analysis of the results obtained during flight tests confirmed the high quality of the stabilisation system. Specifically, the anticipated accuracy of both longitudinal and lateral channel stabilisation was achieved.
Originality/value
The proposed flight stabilisation system, utilizing trim tabs, offers several advantages over classic automatic flight systems in terms of weight, energy consumption, structural simplicity and obviates the need for primary control modifications on the aircraft. It was developed using modern techniques of model-based design, automatic code generation and hardware-in-the-loop simulations.
Details
Keywords
Krystian Borodacz, Cezary Szczepański and Stanisław Popowski
The selection of a suitable inertial measurement unit (IMU) is a critical step in an inertial navigation system (INS) design. Nevertheless, inertial sensors manufacturers are…
Abstract
Purpose
The selection of a suitable inertial measurement unit (IMU) is a critical step in an inertial navigation system (INS) design. Nevertheless, inertial sensors manufacturers are unwilling to publish their products’ accurate performance parameters along with a price. This paper aims to summarise the current IMU market review and point out parameters important for short-term inertial navigation.
Design/methodology/approach
The market review is based on the information published by manufacturers in brochures, datasheets and websites. Some information, including price, was also collected from sensors distributors. The entire collection of data includes data of over 150 sensors from 32 manufacturers and is valid for the first half of the year 2020.
Findings
This paper answers the following questions: •Why and where use inertial navigation? •Which parameters should one emphasise during IMU selection?•What is currently available on the IMU market? •Which parameters have a significant influence on price? •What are the advantages of specific sensor technology?
Originality/value
This paper gathers data published by IMU manufacturers, allowing for a quick overview of the current market. Based on real data, different sensor technologies are compared. The performed analysis presents the statistical basis for the IMU selection. By theoretical considerations a significance of sensor parameters is drawn and an approach to an IMU selection based on limited number of parameters is proposed. Although the considerations have been carried out regarding inertial navigation, the results from an extensive analysis of commercially available sensors may also be useful for other applications.
Details
Keywords
Cezary Szczepanski, Mariusz Krawczyk and Albert Zajdel
A standard automatic flight control system – autopilot – will become required equipment of the future aircraft, operating in the common sky. For a specific group of aircraft, they…
Abstract
Purpose
A standard automatic flight control system – autopilot – will become required equipment of the future aircraft, operating in the common sky. For a specific group of aircraft, they are too expensive and too energy-consuming solutions. This paper aims to present the concept of an automatic flight control system that overcomes those limitations.
Design/methodology/approach
The proposed automatic flight control system uses the trim tabs in all prime flight controlling surfaces: elevator, ailerons and rudder, for stabilizing and controlling the steady flights of an aircraft.
Findings
The results of an aeroplane flight controlled with the use of trim tabs simulation tests and remarks have been presented and discussed. The simulation was conducted in real-time hardware in the loop environment. The stabilization of the flight was achieved in performed test scenarios.
Originality/value
The possibility to control an aircraft with coordinated deflections of the trimming surfaces is a beneficial alternate to those currently used and can be recommended for use in the next-generation aircraft.
Details
Keywords
Krystian Borodacz and Cezary Szczepański
Before designing a navigation system, it is necessary to analyse possible approaches in terms of expected accuracy, existing limitations and economic justification to select the…
Abstract
Purpose
Before designing a navigation system, it is necessary to analyse possible approaches in terms of expected accuracy, existing limitations and economic justification to select the most advantageous solution. This paper aims to collect possible navigation methods that can provide correction for inertial navigation and to evaluate their suitability for use on a manoeuvring tactical missile.
Design/methodology/approach
The review of existing munitions was based on data collected from the literature and online databases. The data collected included dimensions, performance, applied navigation and guidance methods and their achievable accuracy. The requirements and limitations identified were confronted with the range of sensor parameters available on the market. Based on recent literature, navigation methods were reviewed and evaluated for applicability to inertial navigation system (INS) correction in global navigation satellite system-denied space.
Findings
The performance analysis of existing munition shows that small and relatively inexpensive micro-electro-mechanical system-type inertial sensors are required. A review of the parameters of existing devices of this type has shown that they are subject to measurement errors that do not allow them to achieve the delivery accuracy expected of precision missiles. The most promising navigation correction methods for manoeuvring flying objects have been identified.
Originality/value
The information presented in this paper is the result of the first phase of a project and presents the results of the requirements selection, initial sizing and preliminary design of the navigation system. This paper combines a review of the current state of the art in missile systems and an analysis of INS accuracy including the selection of sensor parameters.
Details
Keywords
Albert Zajdel, Michal Welcer and Cezary Jerzy Szczepanski
This paper aims to present assessment of models and simulation results used in the development process of flight stabilisation system that uses trim tabs for PZL-130 Orlik…
Abstract
Purpose
This paper aims to present assessment of models and simulation results used in the development process of flight stabilisation system that uses trim tabs for PZL-130 Orlik turboprop military trainer aircraft. Flight test of the system allowed to compare software and hardware simulation results with real flight recordings.
Design/methodology/approach
Proposed flight stabilisation system was developed using modern techniques of model-based design, automatic code generation, software and hardware in the loop testing. The project reached flight testing stage which allowed to gather data to verify models and simulation results and asses their quality.
Findings
Results of the comparison showed that the trim tab actuator model used in simulation can be improved by adding play. This reduced the difference between simulation and real flight system output – actuator angle. The influence of airloads on the flying actuator angle compared to hardware in the loop simulation in lab is less than ± 0.6°.
Originality/value
Proposed flight stabilisation system that uses trim tabs has several benefits over classic automatic flight system in terms of weight, energy consumption and structure simplicity and does not need aircraft primary control modification. It was developed using modern techniques of model-based design, automatic code generation and hardware in the loop simulations.
Details
Keywords
Cezary Jerzy Szczepanski and Raja Purushothaman
The unmanned aerial vehicles (UAVs) entered into their development stage when different applications became real. One of those application areas is agriculture. Agriculture and…
Abstract
Purpose
The unmanned aerial vehicles (UAVs) entered into their development stage when different applications became real. One of those application areas is agriculture. Agriculture and transport currently follow infrastructure as the top industries in the world UAV market. The agricultural UAV can be acquired as a ready-made, built by its future user or UAV-as-a-service (UaaS) way. This paper aims to help the UAVs’ users to choose the right sensors for agricultural purposes. For that sake, the overview of the types and application areas of onboard sensors is presented and discussed. Some conclusions and suggestions should allow readers to choose the proper onboard sensors set and the right way of acquiring UAVs for their purposes related to the agricultural area.
Design/methodology/approach
The agricultural UAVs’ onboard specialised sensors have been analysed, described and evaluated from the farmer’s operational point of view. That analysis took into consideration the agricultural UAVs’ types of missions, sensor characteristics, basics of the data processing software and the whole set of UAV-sensor-software operational features. As the conclusions, the trends in the onboard agricultural UAVs’ sensors, their applications and operational characteristics have been presented.
Findings
Services performed by the UAVs for the agriculture businesses are the second in the UAV services world market, and their growth potential is around 17% compound annual growth rate in the next years. As one of the quickest developing businesses, it will attract substantial investments in all related areas. They will be done in the research, development and market deployment stages of that technology development. The authors can expect the new business models of the equipment manufacturers, service providers and sellers of the equipment, consumables and materials. The world agricultural UAVs’ services market will be divided between the following two main streams: the UAVs’ solutions dedicated to the individual farmers, systems devoted to the companies giving the specialised services to individual farmers, in the form of UaaS. It will be followed by the two directions of the agriculture UAV set optimisation, according to each of the above streams’ specific requirements and expectations. Solutions for the individual users will be more straightforward, universal and more comfortable to operate but less effective and less accurate than systems dedicated to the agricultural service provider. UAVs are becoming important universal machines in the agriculture business. They are the newcomers in that business but can change the processes performed traditionally. Such an example is spraying the crops. UAVs spray the rice fields in Japan on at least half of them every year. The other is defoliating the cotton leaves, which only in one China province takes place on a few million hectares every year (Kurkute et al., 2018). That trend will extend the range of applications of UAVs. The agricultural UAV will take over process after process from the traditional machines. The types and number of missions and activities performed by agricultural UAVs are growing. They are strictly connected with the development of hardware and software responsible for those missions’ performance. New onboard sensors are more reliable, have better parameters and their prices are reasonable. Onboard computers and data processing and transmitting methods allow for effective solutions of automatisation and autonomy of the agricultural UAVs’ operation. Automatisation and autonomous performance of the UAVs’ agricultural missions are the main directions of the future development of that technology. Changing the UAV payload allows for its application to a different mission. Changing the payload, like effectors, is quite simple and does not require any special training or tooling. It can be done in the field during the regular operation of the agricultural UAV. Changing the sensor set can be more complicated, because of the eventually required calibrating of those sensors. The same set of sensors gives a possibility to perform a relatively broad range of missions and tasks. The universal setup consists of the multispectral and RGB camera. The agricultural UAV equipped with such a set of sensors can effectively perform most of the crop monitoring missions. The agriculture business will accept the optimised sensor-computer-software UAV payload set, where its exploitation cost and operational simplicity are the critical optimisation factors. Simplicity, reliability and effectiveness of the everyday operation are the vital factors of accepting the agricultural UAV technology as a widespread working horse.
Research limitations/implications
Performed research studies have been done taking into consideration the factors influencing the real operational decisions made by the farmers or companies offering UAV services to them. In that case, e.g. the economical factors have been considered, which could prevail the technical complexity or measuring accuracy of the sensors. Then, drawn conclusions can be not accurate from the scientific research studies point of view, where the financing limits are not so strict.
Practical implications
The main goal of the paper is to present the reasons and factors influencing the “optimised” solution of the configuration of agricultural UAV onboard sensors set. It was done at the level useful for the readers understanding the end-users expectations and having a basic understanding of the sensors-related technologies. The paper should help them to configure an acceptable agricultural UAV for the specific missions or their servicing business.
Social implications
Understanding the technology implications related to the applying of agricultural UAVs into everyday service is one of the main limits of that technology market deployment. The conclusions should allow for avoiding the misunderstanding of the agricultural UAVs’ capabilities and then increasing their social acceptance. That acceptance by the farmers is the key factor for the effective introduction of that technology into the operation.
Originality/value
Presented conclusions have been drawn on the base of the extensive research of the existing literature and web pages, and also on the own experience in forestry and agriculture and other technical applications of the onboard sensors. The experience in practical aspects of the sensors choosing and application into several areas have been also used, e.g. manned and unmanned aeroplanes and helicopters applied in similar and other types of missions.
Details
Keywords
Mariusz Krawczyk, Cezary Jerzy Szczepanski and Albert Zajdel
This paper aims to present a concept of an automatic directional control system of remotely piloted aerial system (RPAS) during the taxiing phase. In particular, it shows the…
Abstract
Purpose
This paper aims to present a concept of an automatic directional control system of remotely piloted aerial system (RPAS) during the taxiing phase. In particular, it shows the initial stages of the control laws synthesis – mathematical model and simulation of taxiing aircraft. Several reasons have emerged in recent years that make the automation of taxiing an important design challenge including decreased safety, performance and pilot workload.
Design/methodology/approach
The adapted methodology follows the model-based design approach in which the control system and the aircraft are mathematically modelled to allow control laws synthesis. The computer simulations are carried out to analyse the model behaviour.
Findings
Chosen methodology and modelling technique, especially tire-ground contact model, resulted in a taxing aircraft model that can be used for directional control law synthesis. Aerodynamic forces and moments were identified in the wind tunnel tests for the full range of the slip angle. Simulations allowed to compute the critical speeds for different taxiway conditions in a 90° turn.
Practical implications
The results can be used for the taxi directional control law synthesis and simulation of the control system. The computed critical speeds can be treated as safety limits.
Originality/value
The taxi directional control system has not been introduced to the RPAS yet. Therefore, the model of taxiing aircraft including aerodynamic characteristics for the full range of the slip angle has a big value in the process of design and implementation of the future auto taxi systems. Moreover, computed speed safety limits can be used by designers and standard creators.
Details
Keywords
Mariusz Krawczyk, Cezary Jerzy Szczepanski and Albert Zajdel
This paper aims to present a concept of an automatic directional control system of remotely piloted aerial system (RPAS) during the taxiing phase. In particular, it shows the…
Abstract
Purpose
This paper aims to present a concept of an automatic directional control system of remotely piloted aerial system (RPAS) during the taxiing phase. In particular, it shows the initial stages of the control laws synthesis-mathematical model and simulation of taxiing aircraft. Several reasons have emerged in recent years that make the automation of taxiing an important design challenge including decreased safety, performance and pilot workload.
Design/methodology/approach
The adapted methodology follows the model-based design approach in which the control system and the aircraft are mathematically modelled to allow control laws synthesis. The computer simulations are carried out to analyse the model behaviour.
Findings
Chosen methodology and modelling technique, especially tire-ground contact model, resulted in a taxiing aircraft model that can be used for directional control law synthesis. Aerodynamic forces and moments were identified in the wind tunnel tests for the full range of the slip angle. Simulations allowed to compute the critical speeds for different taxiway conditions in a 90° turn.
Practical implications
The results can be used for the taxi directional control law synthesis and simulation of the control system. The computed critical speeds can be treated as a safety limits.
Originality/value
The taxi directional control system has not been introduced to the RPAS yet. Therefore, the model of taxiing aircraft including aerodynamic characteristics for the full range of the slip angle has a big value in the process of design and implementation of the future auto taxi systems. Moreover, computed speed safety limits can be used by designers and standards creators.
Details
Keywords
Georges Bridel, Zdobyslaw Jan Goraj, Łukasz Kiszkowiak, Jean-Georges Brévot, Jean Pierre Devaux, Cezary Szczepański and Petr Vrchota
The purpose of this paper is to reduce the exploitation cost below the standard supersonic training aircraft. The idea will benefit from the latest aerodynamic software and modern…
Abstract
Purpose
The purpose of this paper is to reduce the exploitation cost below the standard supersonic training aircraft. The idea will benefit from the latest aerodynamic software and modern avionics, allowing to use much lighter trainer (due to using composite materials and minimizing on board avionic systems), and hence, decreasing the fuel consumption and cost of operation. The need to reform advanced jet training also covers the “red air” missions (manned targets for exercise and training). Red air missions need dedicated more realistic and less costly platforms. However, this makes sense only if the performance of these platforms is comparable to a front-line combat aircraft, particularly in terms of high specific excess power (SEP) and high levels of agility. Failure to address this issue would lead to unrealistic training scenarios and a negative training experience.
Design/methodology/approach
The paper focuses on required research and the feasibility studies of a low-cost operationally effective solution for air combat pilot training, combining a very agile air platform, fully dedicated to training, and a flexible, interoperable, integrated training system (ITS) using simulations to provide a complete Live Virtual Constructive (LVC) solution. This study will explore innovations applicable to the learning and maintaining of skills, develop a first pilot physiological survey and propose a follow-up program aimed at developing a fully European air combat training service by 2028 or beyond.
Findings
The volume inside the SEP envelope shows the available SEP potential depending on Mach number and Altitude: SEP is directly representative for climb rate and acceleration or a combination of both. The surface of the volume represents steady-state conditions, i.e. at 1 g (no turns), enabling us to conclude that supersonic trainer and fighter present high energy potentials (SEP) required in air combat manoeuvres and that a subsonic trainer cannot match those qualities and does not fulfil advanced trainer requirements.
Practical implications
A major difficulty for the air forces in their training syllabus lies in the fact that in peacetime supersonic flight is restricted to dedicated areas or over the sea. However, a real beyond visual range fight can often start in the supersonic and continue into the high subsonic regime after a few minutes. Therefore, this novel trainer superior performance in the transonic region will bring the following advantages, for example in the rare opportunities to train in the lower supersonic regime, it can provide similar performance like combat aircraft and in the usual advanced training in the high subsonic regime, this novel trainer offers excellent realistic performance in a region where the conventional advanced trainer performance collapses beyond Mach 0.8 and does not provide realistic training results. The feasibility study shall be executed in close cooperation between User (Requirements) and Study Team (Solutions). The early conceptual design with basic layout and data (T/W and W/L) is key for operational utility and must be addressed with the User right at the beginning. The users are therefore offered early participation in the requirements development.
Originality/value
The presented methodology is an original approach to the combat pilot training. The core of the methodology is a study of a solution that aims to reduce training costs through an affordable operational air vehicle and an agile ITS. This goal will be reached by a design methodology that will concentrate the innovation and the developments to the critical issues for the concept (aerodynamics, propulsion, simulated weapon system, ITS architecture, etc.): the remaining topics will be adapted from existing solution, optimizing the development.
Details
Keywords
Considers the penal law in Poland since the change in regime from totalitarian to democratic state. Discusses the different approaches used and the change in crime over the…
Abstract
Considers the penal law in Poland since the change in regime from totalitarian to democratic state. Discusses the different approaches used and the change in crime over the decade. Gives some statistics. States that Polish law will have to change to comply with European law as it strive to join the economic community. Concludes that the reader should “ponder anew the sense and role of penal responsibility” on an international scale.
Details