Search results

1 – 1 of 1
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 24 April 2023

Asif Ur Rehman, Kashif Azher, Abid Ullah, Celal Sami Tüfekci and Metin Uymaz Salamci

This study aims to describe the effects of capillary forces or action, viscosity, gravity and inertia via the computational fluid dynamics (CFD) analysis. The study also includes…

352

Abstract

Purpose

This study aims to describe the effects of capillary forces or action, viscosity, gravity and inertia via the computational fluid dynamics (CFD) analysis. The study also includes distribution of the binder droplet over the powder bed after interacting from different heights.

Design/methodology/approach

Additive manufacturing (AM) has revolutionized many industries. Binder jetting (BJT) is a powder-based AM method that enables the production of complex components for a wide range of applications. The pre-densification interaction of binder and powder is vital among various parameters that can affect the BJT performance. In this study, BJT process is studied for the binder interaction with the powder bed of SS316L. The effect of the droplet-powder distance is thoroughly analysed. Two different droplet heights are considered, namely, h1 (zero) and h2 (9.89 mm).

Findings

The capillary and inertial effects are predominant, as the distance affects these parameters significantly. The binder spreading and penetration depth onto the powder bed is influenced directly by the distance of the binder droplet. The former increases with an increase in latter. The binder distribution over the powder bed, whether uniform or not, is studied by the stream traces. The penetration depth of the binder was also observed along the cross-section of the powder bed through the same.

Originality/value

In this work, the authors have developed a more accurate representative discrete element method of the powder bed and CFD analysis of binder droplet spreading and penetration inside the powder bed using Flow-3D. Moreover, the importance of the splashing due to the binder’s droplet height is observed. If splashing occurs, it will produce distortion in the powder, resulting in a void in the final part.

Details

Rapid Prototyping Journal, vol. 29 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 1 of 1
Per page
102050