ALTHOUGH tubular fluorescent lamps have been used very extensively in industry since their introduction in March, 1940, there is still doubt in many minds as to why they should be…
Abstract
ALTHOUGH tubular fluorescent lamps have been used very extensively in industry since their introduction in March, 1940, there is still doubt in many minds as to why they should be preferred to older and more conventional forms of light sources. There is a general tendency to think of them only as sources similar to natural daylight in their colour rendering properties, and to overlook their other exceptional properties. To the lighting engineer daylight rendering is only one, and probably not the most important, of their qualifications. In an attempt to demonstrate the part which these lamps can play in industry, especially at the present time, this article has been written.
The discrete Fourier transform (dft) of a fractional process is studied. An exact representation of the dft is given in terms of the component data, leading to the frequency…
Abstract
The discrete Fourier transform (dft) of a fractional process is studied. An exact representation of the dft is given in terms of the component data, leading to the frequency domain form of the model for a fractional process. This representation is particularly useful in analyzing the asymptotic behavior of the dft and periodogram in the nonstationary case when the memory parameter
Details
Keywords
Han-Ying Liang, Yu Shen and Qiying Wang
Joon Y. Park is one of the pioneers in developing nonlinear cointegrating regression. Since his initial work with Phillips (Park & Phillips, 2001) in the area, the past two…
Abstract
Joon Y. Park is one of the pioneers in developing nonlinear cointegrating regression. Since his initial work with Phillips (Park & Phillips, 2001) in the area, the past two decades have witnessed a surge of interest in modeling nonlinear nonstationarity in macroeconomic and financial time series, including parametric, nonparametric and semiparametric specifications of such models. These developments have provided a framework of econometric estimation and inference for a wide class of nonlinear, nonstationary relationships. In honor of Joon Y. Park, this chapter contributes to this area by exploring nonparametric estimation of functional-coefficient cointegrating regression models where the structural equation errors are serially dependent and the regressor is endogenous. The self-normalized local kernel and local linear estimators are shown to be asymptotic normal and to be pivotal upon an estimation of co-variances. Our new results improve those of Cai et al. (2009) and open up inference by conventional nonparametric method to a wide class of potentially nonlinear cointegrated relations.
Details
Keywords
This paper provides a selective survey of the panel macroeconometric techniques that focus on controlling the impact of “unobserved heterogeneity” across individuals and over time…
Abstract
This paper provides a selective survey of the panel macroeconometric techniques that focus on controlling the impact of “unobserved heterogeneity” across individuals and over time to obtain valid inference for “structures” that are common across individuals and over time. We consider issues of (i) estimating vector autoregressive models; (ii) testing of unit root or cointegration; (iii) statistical inference for dynamic simultaneous equations models; (iv) policy evaluation; and (v) aggregation and prediction.
Details
Keywords
The author develops and extends the asymptotic F- and t-test theory in linear regression models where the regressors could be deterministic trends, unit-root processes…
Abstract
The author develops and extends the asymptotic F- and t-test theory in linear regression models where the regressors could be deterministic trends, unit-root processes, near-unit-root processes, among others. The author considers both the exogenous case where the regressors and the regression error are independent and the endogenous case where they are correlated. In the former case, the author designs a new set of basis functions that are invariant to the parameter estimation uncertainty and uses them to construct a new series long-run variance estimator. The author shows that the F-test version of the Wald statistic and the t-statistic are asymptotically F and t distributed, respectively. In the latter case, the author shows that the asymptotic F and t theory is still possible, but one has to develop it in a pseudo-frequency domain. The F and t approximations are more accurate than the more commonly used chi-squared and normal approximations. The resulting F and t tests are also easy to implement – they can be implemented in exactly the same way as the F and t tests in a classical normal linear regression.
Details
Keywords
Jiti Gao and Maxwell King
This paper considers a class of parametric models with nonparametric autoregressive errors. A new test is established and studied to deal with the parametric specification of the…
Abstract
This paper considers a class of parametric models with nonparametric autoregressive errors. A new test is established and studied to deal with the parametric specification of the nonparametric autoregressive errors with either stationarity or nonstationarity. Such a test procedure can initially avoid misspecification through the need to parametrically specify the form of the errors. In other words, we estimate the form of the errors and test for stationarity or nonstationarity simultaneously. We establish asymptotic distributions of the proposed test. Both the setting and the results differ from earlier work on testing for unit roots in parametric time series regression. We provide both simulated and real-data examples to show that the proposed nonparametric unit root test works in practice.
Details
Keywords
Jianning Kong, Peter C. B. Phillips and Donggyu Sul
Measurement of diminishing or divergent cross section dispersion in a panel plays an important role in the assessment of convergence or divergence over time in key economic…
Abstract
Measurement of diminishing or divergent cross section dispersion in a panel plays an important role in the assessment of convergence or divergence over time in key economic indicators. Econometric methods, known as weak σ-convergence tests, have recently been developed (Kong, Phillips, & Sul, 2019) to evaluate such trends in dispersion in panel data using simple linear trend regressions. To achieve generality in applications, these tests rely on heteroskedastic and autocorrelation consistent (HAC) variance estimates. The present chapter examines the behavior of these convergence tests when heteroskedastic and autocorrelation robust (HAR) variance estimates using fixed-b methods are employed instead of HAC estimates. Asymptotic theory for both HAC and HAR convergence tests is derived and numerical simulations are used to assess performance in null (no convergence) and alternative (convergence) cases. While the use of HAR statistics tends to reduce size distortion, as has been found in earlier analytic and numerical research, use of HAR estimates in nonparametric standardization leads to significant power differences asymptotically, which are reflected in finite sample performance in numerical exercises. The explanation is that weak σ-convergence tests rely on intentionally misspecified linear trend regression formulations of unknown trend decay functions that model convergence behavior rather than regressions with correctly specified trend decay functions. Some new results on the use of HAR inference with trending regressors are derived and an empirical application to assess diminishing variation in US State unemployment rates is included.
Details
Keywords
New asymptotic approximations are established for the Wald and t statistics in the presence of unknown but strong autocorrelation. The asymptotic theory extends the usual…
Abstract
New asymptotic approximations are established for the Wald and t statistics in the presence of unknown but strong autocorrelation. The asymptotic theory extends the usual fixed-smoothing asymptotics under weak dependence to allow for near-unit-root and weak-unit-root processes. As the locality parameter that characterizes the neighborhood of the autoregressive root increases from zero to infinity, the new fixed-smoothing asymptotic distribution changes smoothly from the unit-root fixed-smoothing asymptotics to the usual fixed-smoothing asymptotics under weak dependence. Simulations show that the new approximation is more accurate than the usual fixed-smoothing approximation.
Details
Keywords
Javier Hidalgo and Jungyoon Lee
This paper examines a nonparametric CUSUM-type test for common trends in large panel data sets with individual fixed effects. We consider, as in Zhang, Su, and Phillips (2012), a…
Abstract
This paper examines a nonparametric CUSUM-type test for common trends in large panel data sets with individual fixed effects. We consider, as in Zhang, Su, and Phillips (2012), a partial linear regression model with unknown functional form for the trend component, although our test does not involve local smoothings. This conveniently forgoes the need to choose a bandwidth parameter, which due to a lack of a clear and sensible information criteria is difficult for testing purposes. We are able to do so after making use that the number of individuals increases with no limit. After removing the parametric component of the model, when the errors are homoscedastic, our test statistic converges to a Gaussian process whose critical values are easily tabulated. We also examine the consequences of having heteroscedasticity as well as discussing the problem of how to compute valid critical values due to the very complicated covariance structure of the limiting process. Finally, we present a small Monte Carlo experiment to shed some light on the finite sample performance of the test.