Search results

1 – 2 of 2
Article
Publication date: 28 September 2012

A.D. Drozdov, d J. and C.G. Potarniche

The purpose of this paper is to perform experimental investigation and constitutive modeling of the viscoelastic and viscoplastic behavior of metallocene catalyzed polypropylene…

Abstract

Purpose

The purpose of this paper is to perform experimental investigation and constitutive modeling of the viscoelastic and viscoplastic behavior of metallocene catalyzed polypropylene (mPP) with application to lifetime assessment under conditions of creep rupture.

Design/methodology/approach

Three series of experiments are conducted where the mechanical response of mPP is analyzed in tensile tests with various strain rates, relaxation tests with various strains, and creep tests with various stresses at room temperature. A constitutive model is derived for semicrystalline polymers under an arbitrary three‐dimensional deformation with small strains, and its parameters are found fitting the observations.

Findings

Crystalline structure and molecular architecture of polypropylene strongly affect its time‐ and rate‐dependent behavior. In particular, time‐to‐failure of metallocene catalyzed polypropylene under tensile creep noticeably exceeds that of isotactic polypropylene produced by the conventional Ziegler‐Natta catalysis.

Originality/value

Novel stress‐strain relations are developed in viscoelastoplasticity of semi‐crystalline polymers and applied to predict their mechanical behavior in long‐term creep tests.

Details

Multidiscipline Modeling in Materials and Structures, vol. 8 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 20 November 2020

S. Madhu and M. Balasubramanian

The purpose of this study is for solving many issues in production that includes processing of complex-shaped profile, machining of high-strength materials, good surface finish…

Abstract

Purpose

The purpose of this study is for solving many issues in production that includes processing of complex-shaped profile, machining of high-strength materials, good surface finish with high-level precision and minimization of waste. Among the various advanced machining processes, abrasive jet machining (AJM) is one of the non-traditional machining techniques used for various applications such as polishing, deburring and hole making. Hence, an overview of the investigations done on carbon fiber-reinforced polymer (CFRP) and glass fiber-reinforced polymer (GRFP) composites becomes important.

Design/methodology/approach

Discussion on various approaches to AJM, the effect of process parameters on the glass fiber and carbon fiber polymeric composites are presented. Kerf characteristics, surface roughness and various nozzle design were also discussed.

Findings

It was observed that abrasive jet pressure, stand-off distance, traverse rate, abrasive size, nozzle diameter, angle of attack are the significant process parameters which affect the machining time, material removal rate, top kerf, bottom kerf and kerf angle. When the particle size is maximum, the increased kinetic energy of the particle improves the penetration depth on the CFRP surface. As the abrasive jet pressure is increased, the cutting process is enabled without severe jet deflection which in turn minimizes the waviness pattern, resulting in a decrease of the surface roughness.

Research limitations/implications

The review is limited to glass fiber and carbon fiber polymeric composites.

Practical implications

In many applications, the use of composite has gained wide acceptance. Hence, machining of the composite need for the study also has gained wide acceptance.

Social implications

The usage of composites reduces the usage of very costly materials of high density. The cost of the material also comes down.

Originality/value

This paper is a comprehensive review of machining composite with abrasive jet. The paper covers in detail about machining of only GFRP and CFRP composites with various nozzle designs, unlike many studies which has focused widely on general AJM of various materials.

Details

World Journal of Engineering, vol. 18 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 2 of 2