Irindu Upasiri, Chaminda Konthesingha, Anura Nanayakkara, Keerthan Poologanathan, Brabha Nagaratnam and Gatheeshgar Perampalam
In this study, the insulation fire ratings of lightweight foamed concrete, autoclaved aerated concrete and lightweight aggregate concrete were investigated using finite element…
Abstract
Purpose
In this study, the insulation fire ratings of lightweight foamed concrete, autoclaved aerated concrete and lightweight aggregate concrete were investigated using finite element modelling.
Design/methodology/approach
Lightweight aggregate concrete containing various aggregate types, i.e. expanded slag, pumice, expanded clay and expanded shale were studied under standard fire and hydro–carbon fire situations using validated finite element models. Results were used to derive empirical equations for determining the insulation fire ratings of lightweight concrete wall panels.
Findings
It was observed that autoclaved aerated concrete and foamed lightweight concrete have better insulation fire ratings compared with lightweight aggregate concrete. Depending on the insulation fire rating requirement of 15%–30% of material saving could be achieved when lightweight aggregate concrete wall panels are replaced with the autoclaved aerated or foamed concrete wall panels. Lightweight aggregate concrete fire performance depends on the type of lightweight aggregate. Lightweight concrete with pumice aggregate showed better fire performance among the normal lightweight aggregate concretes. Material saving of 9%–14% could be obtained when pumice aggregate is used as the lightweight aggregate material. Hydrocarbon fire has shown aggressive effect during the first two hours of fire exposure; hence, wall panels with lesser thickness were adversely affected.
Originality/value
Finding of this study could be used to determine the optimum lightweight concrete wall type and the optimum thickness requirement of the wall panels for a required application.
Details
Keywords
Thadshajini Suntharalingam, Irindu Upasiri, Perampalam Gatheeshgar, Keerthan Poologanathan, Brabha Nagaratnam, Heshachanaa Rajanayagam and Satheeskumar Navaratnam
Fire safety of a building is becoming a prominent consideration due to the recent fire accidents and the consequences in terms of loss of life and property damage. ISO 834…
Abstract
Purpose
Fire safety of a building is becoming a prominent consideration due to the recent fire accidents and the consequences in terms of loss of life and property damage. ISO 834 standard fire test regulation and simulation cannot be applied to assess the fire performance of 3D printed concrete (3DPC) walls as the real fire time-temperature curves could be more severe, compared to standard fire curve, in terms of the maximum temperature and the time to reach that maximum temperature. Therefore, this paper aims to describe an investigation on the fire performance of 3DPC composite wall panels subjected to different fire scenarios.
Design/methodology/approach
The fire performance of 3DPC wall was traced through developing an appropriate heat transfer numerical model. The validity of the developed numerical model was confirmed by comparing the time-temperature profiles with available fire test results of 3DPC walls. A detailed parametric study of 140 numerical models were, subsequently, conducted covering different 3DPC wall configurations (i.e. solid, cavity and rockwool infilled cavity), five varying densities and consideration of four fire curves (i.e. standard, hydrocarbon fire, rapid and prolong).
Findings
3DPC walls and Rockwool infilled cavity walls showed superior fire performance. Furthermore, the study indicates that the thermal responses of 3DPC walls exposed to rapid-fire is crucial compared to other fire scenarios.
Research limitations/implications
To investigate the thermal behaviour, ABAQUS allows performing uncoupled and coupled thermal analysis. Coupled analysis is typically used to investigate combined mechanical-thermal behaviour. Since, considered 3DPC wall configurations are non-load bearing, uncouple heat transfer analysis was performed. Time-temperature variations can be obtained to study the thermal response of 3DPC walls.
Originality/value
At present, there is limited study to analyse the behaviour of 3DPC composite wall panels in real fire scenarios. Hence, this paper presents an investigation on the fire performance of 3DPC composite wall panels subjected to different fire scenarios. This research is the first attempt to extensively study the fire performance of non-load bearing 3DPC walls.