Search results

1 – 10 of 70
Article
Publication date: 5 July 2021

Rajakumar B.R., Gokul Yenduri, Sumit Vyas and Binu D.

This paper aims to propose a new assessment system module for handling the comprehensive answers written through the answer interface.

Abstract

Purpose

This paper aims to propose a new assessment system module for handling the comprehensive answers written through the answer interface.

Design/methodology/approach

The working principle is under three major phases: Preliminary semantic processing: In the pre-processing work, the keywords are extracted for each answer given by the course instructor. In fact, this answer is actually considered as the key to evaluating the answers written by the e-learners. Keyword and semantic processing of e-learners for hierarchical clustering-based ontology construction: For each answer given by each student, the keywords and the semantic information are extracted and clustered (hierarchical clustering) using a new improved rider optimization algorithm known as Rider with Randomized Overtaker Update (RR-OU). Ontology matching evaluation: Once the ontology structures are completed, a new alignment procedure is used to find out the similarity between two different documents. Moreover, the objects defined in this work focuses on “how exactly the matching process is done for evaluating the document.” Finally, the e-learners are classified based on their grades.

Findings

On observing the outcomes, the proposed model shows less relative mean squared error measure when weights were (0.5, 0, 0.5), and it was 71.78% and 16.92% better than the error values attained for (0, 0.5, 0.5) and (0.5, 0.5, 0). On examining the outcomes, the values of error attained for (1, 0, 0) were found to be lower than the values when weights were (0, 0, 1) and (0, 1, 0). Here, the mean absolute error (MAE) measure for weight (1, 0, 0) was 33.99% and 51.52% better than the MAE value for weights (0, 0, 1) and (0, 1, 0). On analyzing the overall error analysis, the mean absolute percentage error of the implemented RR-OU model was 3.74% and 56.53% better than k-means and collaborative filtering + Onto + sequential pattern mining models, respectively.

Originality/value

This paper adopts the latest optimization algorithm called RR-OU for proposing a new assessment system module for handling the comprehensive answers written through the answer interface. To the best of the authors’ knowledge, this is the first work that uses RR-OU-based optimization for developing a new ontology alignment-based online assessment of e-learners.

Details

Kybernetes, vol. 51 no. 2
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 3 August 2020

Vijaya P and Binu D

Abstract

Details

Data Technologies and Applications, vol. 54 no. 3
Type: Research Article
ISSN: 2514-9288

Content available

Abstract

Details

Data Technologies and Applications, vol. 54 no. 1
Type: Research Article
ISSN: 2514-9288

Article
Publication date: 18 March 2021

Pandiaraj A., Sundar C. and Pavalarajan S.

Up to date development in sentiment analysis has resulted in a symbolic growth in the volume of study, especially on more subjective text types, namely, product or movie reviews…

Abstract

Purpose

Up to date development in sentiment analysis has resulted in a symbolic growth in the volume of study, especially on more subjective text types, namely, product or movie reviews. The key difference between these texts with news articles is that their target is defined and unique across the text. Hence, the reviews on newspaper articles can deal with three subtasks: correctly spotting the target, splitting the good and bad content from the reviews on the concerned target and evaluating different opinions provided in a detailed manner. On defining these tasks, this paper aims to implement a new sentiment analysis model for article reviews from the newspaper.

Design/methodology/approach

Here, tweets from various newspaper articles are taken and the sentiment analysis process is done with pre-processing, semantic word extraction, feature extraction and classification. Initially, the pre-processing phase is performed, in which different steps such as stop word removal, stemming, blank space removal are carried out and it results in producing the keywords that speak about positive, negative or neutral. Further, semantic words (similar) are extracted from the available dictionary by matching the keywords. Next, the feature extraction is done for the extracted keywords and semantic words using holoentropy to attain information statistics, which results in the attainment of maximum related information. Here, two categories of holoentropy features are extracted: joint holoentropy and cross holoentropy. These extracted features of entire keywords are finally subjected to a hybrid classifier, which merges the beneficial concepts of neural network (NN), and deep belief network (DBN). For improving the performance of sentiment classification, modification is done by inducing the idea of a modified rider optimization algorithm (ROA), so-called new steering updated ROA (NSU-ROA) into NN and DBN for weight update. Hence, the average of both improved classifiers will provide the classified sentiment as positive, negative or neutral from the reviews of newspaper articles effectively.

Findings

Three data sets were considered for experimentation. The results have shown that the developed NSU-ROA + DBN + NN attained high accuracy, which was 2.6% superior to particle swarm optimization, 3% superior to FireFly, 3.8% superior to grey wolf optimization, 5.5% superior to whale optimization algorithm and 3.2% superior to ROA-based DBN + NN from data set 1. The classification analysis has shown that the accuracy of the proposed NSU − DBN + NN was 3.4% enhanced than DBN + NN, 25% enhanced than DBN and 28.5% enhanced than NN and 32.3% enhanced than support vector machine from data set 2. Thus, the effective performance of the proposed NSU − ROA + DBN + NN on sentiment analysis of newspaper articles has been proved.

Originality/value

This paper adopts the latest optimization algorithm called the NSU-ROA to effectively recognize the sentiments of the newspapers with NN and DBN. This is the first work that uses NSU-ROA-based optimization for accurate identification of sentiments from newspaper articles.

Details

Kybernetes, vol. 51 no. 1
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 11 March 2022

Snehal R. Rathi and Yogesh D. Deshpande

Affective states in learning have gained immense attention in education. The precise affective-states prediction can increase the learning gain by adapting targeted interventions…

Abstract

Purpose

Affective states in learning have gained immense attention in education. The precise affective-states prediction can increase the learning gain by adapting targeted interventions that can adjust the changes in individual affective states of students. Several techniques are devised for predicting the affective states considering audio, video and biosensors. Still, the system that relies on analyzing audio and video cannot certify anonymity and is subjected to privacy problems.

Design/methodology/approach

A new strategy, termed rider squirrel search algorithm-based deep long short-term memory (RiderSSA-based deep LSTM) is devised for affective-state prediction. The deep LSTM training is done by the proposed RiderSSA. Here, RiderSSA-based deep LSTM effectively predicts the affective states like confusion, engagement, frustration, anger, happiness, disgust, boredom, surprise and so on. In addition, the learning styles are predicted based on the extracted features using rider neural network (RideNN), for which the Felder–Silverman learning-style model (FSLSM) is considered. Here, the RideNN classifies the learners. Finally, the course ID, student ID, affective state, learning style, exam score and course completion are taken as output data to determine the correlative study.

Findings

The proposed RiderSSA-based deep LSTM provided enhanced efficiency with elevated accuracy of 0.962 and the highest correlation of 0.406.

Originality/value

The proposed method based on affective prediction obtained maximal accuracy and the highest correlation. Thus, the method can be applied to the course recommendation system based on affect prediction.

Details

Kybernetes, vol. 52 no. 9
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 3 July 2020

Kapil Netaji Vhatkar and Girish P. Bhole

The containerization application is one among the technologies that enable microservices architectures, which is observed to be the model for operating system (OS) virtualization…

Abstract

Purpose

The containerization application is one among the technologies that enable microservices architectures, which is observed to be the model for operating system (OS) virtualization. Containers are the virtual instances of the OS that are structured as the isolation for the OS atmosphere and its file system, which are executed on the single kernel and a single host. Hence, every microservice application is evolved in a container without launching the total virtual machine. The system overhead is minimized in this way as the environment is maintained in a secured manner. The exploitation of a microservice is as easy to start the execution of a new container. As a result, microservices could scale up by simply generating new containers until the required scalability level is attained. This paper aims to optimize the container allocation.

Design/methodology/approach

This paper introduces a new customized rider optimization algorithm (C-ROA) for optimizing the container allocation. The proposed model also considers the impact of system performance along with its security. Moreover, a new rescaled objective function is defined in this work that considers threshold distance, balanced cluster use, system failure, total network distance and security as well. At last, the performance of proposed work is compared over other state-of-the-art models with respect to convergence and cost analysis.

Findings

For experiment 1, the implemented model at 50th iteration has achieved minimal value, which is 29.24%, 24.48% and 21.11% better from velocity updated grey wolf optimisation (VU-GWO), whale random update assisted LA (WR-LA) and rider optimization algorithm (ROA), respectively. Similarly, on considering Experiment 2, the proposed model at 100th iteration attained superior performance than conventional models such as VU-GWO, WR-LA and ROA by 3.21%, 7.18% and 10.19%, respectively. The developed model for Experiment 3 at 100th iteration is 2.23%, 5.76% and 6.56% superior to VU-GWO, WR-LA and ROA.

Originality/value

This paper presents the latest fictional optimization algorithm named ROA for optimizing the container allocation. To the best of the authors’ knowledge, this is the first study that uses the C-ROA for optimization.

Details

International Journal of Pervasive Computing and Communications, vol. 16 no. 3
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 12 February 2020

Kaladhar Gaddala and P. Sangameswara Raju

In general, the optimal reactive power compensation could drastically enhance the performance of distributed network by the reduction of power loss and by enhancement of line…

Abstract

Purpose

In general, the optimal reactive power compensation could drastically enhance the performance of distributed network by the reduction of power loss and by enhancement of line loadability and voltage profile. Till now, there exist various reactive power compensation models including capacitor placement, joined process of on-load tap changer and capacitor banks and integration of DG. Further, one of the current method is the allocation of distribution FACTS (DFACTS) device. Even though, the DFACTS devices are usually used in the enhancement of power quality, they could be used in the optimal reactive power compensation with more effectiveness.

Design/methodology/approach

This paper introduces a power quality enhancement model that is based on a new hybrid optimization algorithm for selecting the precise unified power quality conditioner (UPQC) location and sizing. A new algorithm rider optimization algorithm (ROA)-modified particle swarm optimization (PSO) in fitness basis (RMPF) is introduced for this optimal selections.

Findings

Through the performance analysis, it is observed that as the iteration increases, there is a gradual minimization of cost function. At the 40th iteration, the proposed method is 1.99 per cent better than ROA and genetic algorithm (GA); 0.09 per cent better than GMDA and WOA; and 0.14, 0.57 and 1.94 per cent better than Dragonfly algorithm (DA), worst solution linked whale optimization (WS-WU) and PSO, respectively. At the 60th iteration, the proposed method attains less cost function, which is 2.07, 0.08, 0.06, 0.09, 0.07 and 1.90 per cent superior to ROA, GMDA, DA, GA, WS-WU and PSO, respectively. Thus, the proposed model proves that it is better than other models.

Originality/value

This paper presents a technique for optimal placing and sizing of UPQC. To the best of the authors’ knowledge, this is the first work that introduces RMPF algorithm to solve the optimization problems.

Details

Journal of Engineering, Design and Technology , vol. 18 no. 6
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 17 February 2022

Prajakta Thakare and Ravi Sankar V.

Agriculture is the backbone of a country, contributing more than half of the sector of economy throughout the world. The need for precision agriculture is essential in evaluating…

Abstract

Purpose

Agriculture is the backbone of a country, contributing more than half of the sector of economy throughout the world. The need for precision agriculture is essential in evaluating the conditions of the crops with the aim of determining the proper selection of pesticides. The conventional method of pest detection fails to be stable and provides limited accuracy in the prediction. This paper aims to propose an automatic pest detection module for the accurate detection of pests using the hybrid optimization controlled deep learning model.

Design/methodology/approach

The paper proposes an advanced pest detection strategy based on deep learning strategy through wireless sensor network (WSN) in the agricultural fields. Initially, the WSN consisting of number of nodes and a sink are clustered as number of clusters. Each cluster comprises a cluster head (CH) and a number of nodes, where the CH involves in the transfer of data to the sink node of the WSN and the CH is selected using the fractional ant bee colony optimization (FABC) algorithm. The routing process is executed using the protruder optimization algorithm that helps in the transfer of image data to the sink node through the optimal CH. The sink node acts as the data aggregator and the collection of image data thus obtained acts as the input database to be processed to find the type of pest in the agricultural field. The image data is pre-processed to remove the artifacts present in the image and the pre-processed image is then subjected to feature extraction process, through which the significant local directional pattern, local binary pattern, local optimal-oriented pattern (LOOP) and local ternary pattern (LTP) features are extracted. The extracted features are then fed to the deep-convolutional neural network (CNN) in such a way to detect the type of pests in the agricultural field. The weights of the deep-CNN are tuned optimally using the proposed MFGHO optimization algorithm that is developed with the combined characteristics of navigating search agents and the swarming search agents.

Findings

The analysis using insect identification from habitus image Database based on the performance metrics, such as accuracy, specificity and sensitivity, reveals the effectiveness of the proposed MFGHO-based deep-CNN in detecting the pests in crops. The analysis proves that the proposed classifier using the FABC+protruder optimization-based data aggregation strategy obtains an accuracy of 94.3482%, sensitivity of 93.3247% and the specificity of 94.5263%, which is high as compared to the existing methods.

Originality/value

The proposed MFGHO optimization-based deep-CNN is used for the detection of pest in the crop fields to ensure the better selection of proper cost-effective pesticides for the crop fields in such a way to increase the production. The proposed MFGHO algorithm is developed with the integrated characteristic features of navigating search agents and the swarming search agents in such a way to facilitate the optimal tuning of the hyperparameters in the deep-CNN classifier for the detection of pests in the crop fields.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 16 August 2021

V. Vinolin and M. Sucharitha

With the advancements in photo editing software, it is possible to generate fake images, degrading the trust in digital images. Forged images, which appear like authentic images…

Abstract

Purpose

With the advancements in photo editing software, it is possible to generate fake images, degrading the trust in digital images. Forged images, which appear like authentic images, can be created without leaving any visual clues about the alteration in the image. Image forensic field has introduced several forgery detection techniques, which effectively distinguish fake images from the original ones, to restore the trust in digital images. Among several forgery images, spliced images involving human faces are more unsafe. Hence, there is a need for a forgery detection approach to detect the spliced images.

Design/methodology/approach

This paper proposes a Taylor-rider optimization algorithm-based deep convolutional neural network (Taylor-ROA-based DeepCNN) for detecting spliced images. Initially, the human faces in the spliced images are detected using the Viola–Jones algorithm, from which the 3-dimensional (3D) shape of the face is established using landmark-based 3D morphable model (L3DMM), which estimates the light coefficients. Then, the distance measures, such as Bhattacharya, Seuclidean, Euclidean, Hamming, Chebyshev and correlation coefficients are determined from the light coefficients of the faces. These form the feature vector to the proposed Taylor-ROA-based DeepCNN, which determines the spliced images.

Findings

Experimental analysis using DSO-1, DSI-1, real dataset and hybrid dataset reveal that the proposed approach acquired the maximal accuracy, true positive rate (TPR) and true negative rate (TNR) of 99%, 98.88% and 96.03%, respectively, for DSO-1 dataset. The proposed method reached the performance improvement of 24.49%, 8.92%, 6.72%, 4.17%, 0.25%, 0.13%, 0.06%, and 0.06% in comparison to the existing methods, such as Kee and Farid's, shape from shading (SFS), random guess, Bo Peng et al., neural network, FOA-SVNN, CNN-based MBK, and Manoj Kumar et al., respectively, in terms of accuracy.

Originality/value

The Taylor-ROA is developed by integrating the Taylor series in rider optimization algorithm (ROA) for optimally tuning the DeepCNN.

Details

Data Technologies and Applications, vol. 56 no. 1
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 16 June 2021

Umesh K. Raut and L.K. Vishwamitra

Software-define vehicular networks (SDVN) assure the direct programmability for controlling the vehicles with improved accuracy and flexibility. In this research, the resource…

135

Abstract

Purpose

Software-define vehicular networks (SDVN) assure the direct programmability for controlling the vehicles with improved accuracy and flexibility. In this research, the resource allocation strategy is focused on which the seek-and-destroy algorithm is implemented in the controller in such a way that an effective allocation of the resources is done based on the multi-objective function.

Design/methodology/approach

The purpose of this study is focuses on the resource allocation algorithm for the SDVN with the security analysis to analyse the effect of the attacks in the network. The genuine nodes in the network are granted access to the communication in the network, for which the factors such as trust, throughput, delay and packet delivery ratio are used and the algorithm used is Seek-and-Destroy optimization. Moreover, the optimal resource allocation is done using the same optimization in such a way that the network lifetime is extended.

Findings

The security analysis is undergoing in the research using the simulation of the attackers such as selective forwarding attacks, replay attacks, Sybil attacks and wormhole attacks that reveal that the replay attacks and the Sybil attacks are dangerous attacks and in future, there is a requirement for the security model, which ensures the protection against these attacks such that the network lifetime is extended for a prolonged communication. The achievement of the proposed method in the absence of the attacks is 84.8513% for the remaining nodal energy, 95.0535% for packet delivery ratio (PDR), 279.258 ms for transmission delay and 28.9572 kbps for throughput.

Originality/value

The seek-and-destroy algorithm is one of the swarm intelligence-based optimization designed based on the characteristics of the scroungers and defenders, which is completely novel in the area of optimizations. The diversification and intensification of the algorithm are perfectly balanced, leading to good convergence rates.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

1 – 10 of 70