Search results
1 – 3 of 3Yongliang Jin, Jian Li, Bingxue Cheng, Dan Jia, Jiesong Tu, Shengpeng Zhan, Lian Liu and Haitao Duan
This paper aims to investigate the thermal oxidation behavior of trimethylolpropane trioleate (TMPTO) base oil when exposed to Fe surfaces.
Abstract
Purpose
This paper aims to investigate the thermal oxidation behavior of trimethylolpropane trioleate (TMPTO) base oil when exposed to Fe surfaces.
Design/methodology/approach
Samples of TMPTO bulk oil were placed in Fe vessels and heated in an oven to accelerate the oxidation at different time intervals, while others were placed in glass vessels and used as experimental controls. Subsequently, the physicochemical properties of the oxidized TMPTOs, including the kinematic viscosity and acid value, were measured and a structural analysis was conducted using the Raman and Fourier transform infrared (FTIR) techniques.
Findings
The results demonstrate that the TMPTO bulk oil exhibited an exponential increase in the kinematic viscosity along with the increasing acid value over the oxidation time. The Fe surface significantly increased the kinematic viscosity of TMPTO, while only mildly impacting its acid value compared with the experimental controls. The structural analysis results of the TMPTO suggest that the C = C and = C-H bonds were the vulnerable sites. Furthermore, the results suggest that the Fe surface evidently accelerates the chemical reactions of the C = C and the = C-H bonds, and less alcohols and more carbonyl products were identified in the oil samples that were heated in the Fe vessels.
Originality/value
The results demonstrate that the Fe surfaces affected the oxidation behavior of the TMPTO base oil, and an interaction mechanism between the Fe and the TMPTO is developed.
Details
Keywords
Wen Zhan, Shengpeng Zhan, HaiTao Duan, Xinxiang Li, Jian Li, Bingxue Cheng and Chengqing Yuan
This paper aims to study the thermal oxidation performance of antioxidant additives in ester base oils deeply.
Abstract
Purpose
This paper aims to study the thermal oxidation performance of antioxidant additives in ester base oils deeply.
Design/methodology/approach
ReaxFF molecular dynamics was used to simulate the thermal oxidation process of butyl octyl diphenylamine and octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propanoate as two antioxidant additives act on the Trimethylolpropane trioleate (TMPTO) base oil. Meanwhile, combining with the infrared spectroscopy characterization results of the thermal oxidation test, this paper provides theoretical support for the development of high-performance synthetic lubricants and their antioxidant additives.
Findings
The results show that butyl octyldiphenylamine easily removes the hydrogen atom on the secondary amine, which promotes the formation of more long carbon chain diene radicals or polyene hydroperoxides from TMPTO. Octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propanoate could easily decompose into octadecyl hydroperoxide and 2,6-di-tert-butyl 4-propionylphenol, which could convert into 2-tert-butyl-4-peroxyethyl-6-hydroperoxy-tert-butylphenol in the middle of the thermal oxidation reaction, prompting TMPTO to form more short-chain alkenyl and olefin hydroperoxide or other oxide.
Originality/value
The main change characteristics of base oil molecules are the first thermal decomposition to form oleic acid groups and ethane cyclopropane methyl oleate. Under the action of butyl octyldiphenylamine and octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propanoate, the deep oxidation and decomposition reaction are slowed down.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2020-0037/
Details
Keywords
Bingxue Cheng, Haitao Duan, Yongliang Jin, Lei Wei, Jia Dan, Song Chen and Jian Li
This paper aims to investigate the thermal oxidation characteristics of the unsaturated bonds (C=C) of trimethylolpropane trioleate (TMPTO) and to reveal the high temperature…
Abstract
Purpose
This paper aims to investigate the thermal oxidation characteristics of the unsaturated bonds (C=C) of trimethylolpropane trioleate (TMPTO) and to reveal the high temperature oxidation decay mechanism of unsaturated esters and the nature of the anti-oxidation properties of the additives.
Design/methodology/approach
Using a DXR laser microscopic Raman spectrometer and Linkam FTIR600 temperature control platform, the isothermal oxidation experiments of TMPTO with or without 1.0 wt. % of different antioxidants were performed.
Findings
The results indicated that the Raman peaks of =C-H, C=C and -CH2- weaken gradually with prolonged oxidation time, and the corresponding Raman intensities drop rapidly at higher temperatures. The aromatic amine antioxidant can decrease the attenuation of peak intensity, as it significantly reduces the rate constant of C=C thermal oxidation. The hindered phenolic antioxidant has a protective effect during the early stages of oxidation (induction period), but it may accelerate the oxidation of C=C afterwards.
Originality/value
Research on the structure changes of synthetic esters during oxidation by Raman spectroscopy will be of great importance in promoting the use of Raman spectroscopy to analyze the oxidation of lubricants.
Details