Qian Li, Weihua Cai, Xiaojing Tang, Yicheng Chen, Bingxi Li and Ching-Yao Chen
The aim of this study is to numerically simulate the density-driven convection in heterogeneous porous media associated with anisotropic permeability field, which is important to…
Abstract
Purpose
The aim of this study is to numerically simulate the density-driven convection in heterogeneous porous media associated with anisotropic permeability field, which is important to the safe and stable long term CO2 storage in laminar saline aquifers.
Design/methodology/approach
The study uses compact finite difference and the pseudospectral method to solve Darcy’s law.
Findings
The presence of heterogeneous anisotropy may result in non-monotonic trend of the breakthrough time and quantity of CO2 dissolved in the porous medium, which are important to the CO2 underground storage.
Originality/value
The manuscript numerically study the convective phenomena of mixture contained CO2 and brine. The phenomena are important to the process of CO2 enhanced oil recovery. Interesting qualitative patterns and quantitative trends are revealed in the manuscript.
Details
Keywords
Fei Xu, Zheng Wang, Wei Hu, Caihao Yang, Xiaolong Li, Yaning Zhang, Bingxi Li and Gongnan Xie
The purpose of this paper is to develop a coupled lattice Boltzmann model for the simulation of the freezing process in unsaturated porous media.
Abstract
Purpose
The purpose of this paper is to develop a coupled lattice Boltzmann model for the simulation of the freezing process in unsaturated porous media.
Design/methodology/approach
In the developed model, the porous structure with complexity and disorder was generated by using a stochastic growth method, and then the Shan-Chen multiphase model and enthalpy-based phase change model were coupled by introducing a freezing interface force to describe the variation of phase interface. The pore size of porous media in freezing process was considered as an influential factor to phase transition temperature, and the variation of the interfacial force formed with phase change on the interface was described.
Findings
The larger porosity (0.2 and 0.8) will enlarge the unfrozen area from 42 mm to 70 mm, and the rest space of porous medium was occupied by the solid particles. The larger specific surface area (0.168 and 0.315) has a more fluctuated volume fraction distribution.
Originality/value
The concept of interfacial force was first introduced in the solid–liquid phase transition to describe the freezing process of frozen soil, enabling the formulation of a distribution equation based on enthalpy to depict the changes in the water film. The increased interfacial force serves to diminish ice formation and effectively absorb air during the freezing process. A greater surface area enhances the ability to counteract liquid migration.
Details
Keywords
Chao Shao, Xin Ye, Zhijing Zhang, Dengyu Zhou and Yuhong Liu
Micro ultra-thin tubes have important implications in aerospace, nuclear energy and other fields. In microassembly process, these parts are characterized by following reasons: the…
Abstract
Purpose
Micro ultra-thin tubes have important implications in aerospace, nuclear energy and other fields. In microassembly process, these parts are characterized by following reasons: the small size can easily lead to damage when gripping, even for low intensity and the parts are mainly affected by the instability of light source, for vision-based systems, the visual information about ultra-thin tubes is difficult to gather and the contact state is hard to monitor.
Design/methodology/approach
The paper presents a new method to adjust the position deviations based on contact forces during microassembly processes. Specific research is such that the assembly model was established based both on mechanic calculation and numerical simulation; the assembly task was carried out on an in-house microassembly system with coaxial alignment function (MSCA), the contact statements were controlled based on force sensor feedback signals and the model of the relationship between contact force and assembly deviations was established. Through a comparative study, the results of experiment and simulation differ by less than 11 per cent, validating the accuracy and feasibility of the method.
Findings
The model of assembly force and position deviations of micro ultra-thin tubes based on MSCA has been built. Besides, the assembly force threshold, and the assembly process parameters have been obtained.
Originality/value
The assembly process parameters obtained from experiments can be applied in the precision assembly and provide theoretical guidance and technical support to the precision assembly of the multi-scale parts.
Details
Keywords
Evangelos Bellos, Ilias Daniil and Christos Tzivanidis
The purpose of this paper is to investigate a cylindrical flow insert for a parabolic trough solar collector. Centrally placed and eccentric placed inserts are investigated in a…
Abstract
Purpose
The purpose of this paper is to investigate a cylindrical flow insert for a parabolic trough solar collector. Centrally placed and eccentric placed inserts are investigated in a systematic way to determine which configuration leads to the maximum thermal enhancement.
Design/methodology/approach
The analysis is performed in SolidWorks Flow Simulation with a validated computational fluid dynamics model. Moreover, the useful heat production and the pumping work demand increase are evaluated using the exergy and the overall efficiency criteria. The different scenarios are compared for inlet temperature of 600 K, flow rate of 100 L/min and Syltherm 800 as the working fluid. Moreover, the inlet temperature is examined from 450 to 650 K, and the diameter of the insert is investigated up to 50 mm.
Findings
According to the final results, the use of a cylindrical insert of 30 mm diameter is the most sustainable choice which leads to 0.56 per cent thermal efficiency enhancement. This insert was examined in various eccentric positions, and it is found that the optimum location is 10 mm over the initial position in the vertical direction. The thermal enhancement, in this case, is about 0.69 per cent. The pumping work demand was increased about three times with the insert of 30 mm, but the absolute values of this parameter are too low compared to the useful heat production. So, it is proved that the increase in the pumping work is not able to eliminate the useful heat production increase. Moreover, the thermal enhancement is found to be greater at higher temperature levels and can reach up to 1 per cent for an inlet temperature of r650 K.
Originality/value
The present work is a systematic investigation of the cylindrical flow insert in a parabolic trough collector. Different diameters of this insert, as well as different positions in two dimensions, are examined using a parametrization of angle-radius. To the authors’ knowledge, there is no other study in the literature that investigates the presented many cases systematically with the followed methodology on parabolic trough collectors. Moreover, the results of this work are evaluated with various criteria (thermal, exergy and overall efficiency), something which is not found in the literature.