Search results
1 – 10 of over 3000Bin Chen, Yuan Wang, Shaoqing Cui, Jiansheng Xiang, John-Paul Latham and Jinlong Fu
Accurate presentation of the rock microstructure is critical to the grain-scale analysis of rock deformation and failure in numerical modelling. 3D granite microstructure…
Abstract
Purpose
Accurate presentation of the rock microstructure is critical to the grain-scale analysis of rock deformation and failure in numerical modelling. 3D granite microstructure modelling has only been used in limited studies with the mineral pattern often remaining poorly constructed. In this study, the authors developed a new approach for generating 2D and 3D granite microstructure models from a 2D image by combining a heterogeneous material reconstruction method (simulated annealing method) with Voronoi tessellation.
Design/methodology/approach
More specifically, the stochastic information in the 2D image is first extracted using the two-point correlation function (TPCF). Then an initial 2D or 3D Voronoi diagram with a random distribution of the minerals is generated and optimised using a simulated annealing method until the corresponding TPCF is consistent with that in the 2D image. The generated microstructure model accurately inherits the stochastic information (e.g. volume fraction and mineral pattern) from the 2D image. Lastly, the authors compared the topological characteristics and mechanical properties of the 2D and 3D reconstructed microstructure models with the model obtained by direct mapping from the 2D image of a real rock sample.
Findings
The good agreements between the mapped and reconstructed models indicate the accuracy of the reconstructed microstructure models on topological characteristics and mechanical properties.
Originality/value
The newly developed reconstruction method successfully transfers the mineral pattern from a granite sample into the 2D and 3D Voronoi-based microstructure models ready for use in grain-scale modelling.
Details
Keywords
Bin Chen, Quanlin Zhou and Yuan Wang
Thermal fractures initiated under cooling at the surfaces of a 2-D or 3-D structure propagate, arrest and coalesce, leading to its structural failure and material-property…
Abstract
Purpose
Thermal fractures initiated under cooling at the surfaces of a 2-D or 3-D structure propagate, arrest and coalesce, leading to its structural failure and material-property changes, while the same processes can happen in the rock mass between parallel hydraulic fractures filled with cold fluid, leading to enhanced fracture connectivity and permeability.
Design/methodology/approach
This study used a 2-D plane strain fracture model for mixed-mode thermal fractures from two parallel cooling surfaces. Fracture propagation was governed by the theory of linear elastic fracture mechanics, while the displacement and temperature fields were discretized using the adaptive finite element method. This model was validated using two numerical benchmarks with strong fracture curvature and then used to simulate the propagation and coalescence of thermal fractures in a long rock mass.
Findings
Modeling results show two regimes: (1) thermal fractures from a cooling surface propagate and arrest by following the theoretical solutions of half-plane fractures before the unfractured portion decreases to 20% rock-mass width and (2) some pairs of fractures from the opposite cooling surfaces tend to eventually coalesce. The fracture coalescence time is in a power law with rock-mass width.
Originality/value
These findings are relevant to both subsurface engineering and material engineering: structure failure is a key concern in the latter, while fracture coalescence can enhance the connectivity of thermal and hydraulic fractures and thus reservoir permeability in the former.
Details
Keywords
Hailiang Chen, Chuan Ai, Bin Chen, Yong Zhao, Kaisheng Lai, Lingnan He and Zhihan Liu
The purpose of this paper is to achieve effective governance of online rumors through the proposed rumor propagation model and immunization strategy.
Abstract
Purpose
The purpose of this paper is to achieve effective governance of online rumors through the proposed rumor propagation model and immunization strategy.
Design/methodology/approach
The paper leverages the agent-based modeling (ABM) method to model individuals from two aspects, behavior and attitude. Based on the analysis and research of online data, we propose a rumor propagation model, namely the Untouched view transmit removed-Susceptible hesitate agree disagree (Unite-Shad), and devise an immunization strategy, namely the Gravity Immunization Strategy (GIS). A graph-based framework, namely Pregel, is used to carry out the rumor propagation simulation experiments. Through the experiments, the rationality of the Unite-Shad and the effectiveness of the GIS are verified.
Findings
The study discovers that the inconsistency between human behaviors and attitudes in rumor propagation can be explained by the Unite-shad model. Besides, the GIS, which shows better performance in small-world networks than in scale-free networks, can effectively suppress rumor propagation in the early stage.
Research limitations/implications
This paper provides an effective immunization strategy for rumor governance. Specifically, the Unite-Shad model reveals the mechanism of rumor propagation, and the GIS provides an effective governance method for selecting immune nodes.
Originality/value
The inconsistency of human behaviors and attitudes in real scenes is modeled in the Unite-Shad model. Combined with the model, the definition of diffusion domain is proposed and a novel immunization strategy, namely GIS, is designed, which is significant for the social governance of rumor propagation.
Details
Keywords
The paper aims to clarify the influence of the equivalent particles number (EPN) change on the flow velocity characteristic.
Abstract
Purpose
The paper aims to clarify the influence of the equivalent particles number (EPN) change on the flow velocity characteristic.
Design/methodology/approach
The paper opted for an exploratory study using PIV technology to obtain the transient flow toxicity vector of oil in the square pipeline.
Findings
The paper provides empirical insights about the influence of EPN on the flow average velocity which is most prominent in the middle of the pipeline, and smaller EPN values have a greater impact.
Originality/value
These influence laws of EPN can be used to obtain the dynamic characteristics of oil, which provides theoretical support for oil pollution control and effective treatment measures and lays a preliminary foundation for the online monitoring of particles in oil.
Details
Keywords
Bin Chen, Hongxia Cao and Nina Wan
The purpose of this paper is to study the insulation structure optimization method of multiwinding high-frequency transformer (HFT).
Abstract
Purpose
The purpose of this paper is to study the insulation structure optimization method of multiwinding high-frequency transformer (HFT).
Design/methodology/approach
This paper takes 100 kW, 10 kHz multiwinding HFT as the research object. First, the distribution of electric field strength within the core window of multiwinding HFT with different winding configurations is simulated by the electrostatic field finite element method. The symmetrical hybrid winding structure with minimum electric field strength is selected as the insulation design. To reduce the electric field strength at the end region of the winding, the electrostatic ring and angle ring are designed based on the response surface method.
Findings
The optimal results show that the maximum electric field strength can be reduced by 15.4%, and the low voltage stress can be achieved.
Originality/value
The above research provides guidance and basis for the optimal design of insulation structure of multiwinding HFT.
Details
Keywords
Qing Wang, Xuening Wang, Shaojing Sun, Litao Wang, Yan Sun, Xinyan Guo, Na Wang and Bin Chen
This study aims to study the distribution characteristics of antibiotic resistance in direct-eating food and analysis of Citrobacter freundii genome and pathogenicity. Residual…
Abstract
Purpose
This study aims to study the distribution characteristics of antibiotic resistance in direct-eating food and analysis of Citrobacter freundii genome and pathogenicity. Residual antibiotics and antibiotic resistance genes (ARGs) in the environment severely threaten human health and the ecological environment. The diseases caused by foodborne pathogenic bacteria are increasing daily, and the enhancement of antibiotic resistance of pathogenic bacteria poses many difficulties in the treatment of disease.
Design/methodology/approach
In this study, six fresh fruits and vegetable samples were selected for isolation and identification of culturable bacteria and analysis of antibiotic resistance. The whole genome of Citrobacter freundii isolated from cucumber was sequenced and analyzed by Oxford Nanopore sequencing.
Findings
The results show that 270 strains of bacteria were identified in 6 samples. From 12 samples of direct food, 2 kinds of probiotics and 10 kinds of opportunistic pathogens were screened. The proportion of Citrobacter freundii screened from cucumber was significantly higher than that from other samples, and it showed resistance to a variety of antibiotics. Whole genome sequencing showed that Citrobacter freundii was composed of a circular chromosome containing signal peptides, transmembrane proteins and transporters that could induce antibiotic efflux, indicating that Citrobacter freundii had strong adaptability to the environment. The detection of genes encoding carbohydrate active enzymes is more beneficial to the growth and reproduction of Citrobacter freundii in crops. A total of 29 kinds of ARGs were detected in Citrobacter freundii, mainly conferring resistance to fluoroquinolones, aminoglycosides, carbapenem, cephalosporins and macrolides. The main mechanisms are the change in antibiotic targets and efflux pumps, the change in cell permeability and the inactivation of antibiotics and the detection of virulence factors and ARGs, further indicating the serious risk to human health.
Originality/value
The detection of genomic islands and prophages increases the risk of horizontal transfer of virulence factors and ARGs, which spreads the drug resistance of bacteria and pathogenic bacteria more widely.
Details
Keywords
Abstract
Purpose
The purpose of this paper is to study the multi-objective optimization design method of high-power high-frequency magnetic-resonance air-core transformer (ACT).
Design/methodology/approach
First, this paper studies the interleaved winding technology, the process of modeling and simulation, the calculation method of high-frequency loss of Litz wire and the design of magnetic shielding in detail. Second, the multi-objective optimization design process of high-frequency magnetic-resonance ACT is established by parametric scanning method and orthogonal experiment method.
Findings
An ACT model of 2 kV/100 kW/81.34 kHz was designed. The efficiency, weight power density and volume power density are 99.61%, 21.6 kW/kg and 5.1 kW/kg, respectively. Finally, the multi-physical field coupling simulation method is used to calculate the port excitation voltages and currents and temperature field of ACT. The maximum temperature of the ACT is 95.5 °C, which meets the design requirements.
Originality/value
The above research provides guidance and basis for the optimization design of high-power high-frequency magnetic-resonance ACT.
Details
Keywords
Bin Chen, Binsheng Xi, Nina Wan, Shuaibing Wang and Bo Tang
Because the nanocrystalline core is widely used in power electronic equipment, and the excitation waveform of its working mode is complex, the vibration at medium and high…
Abstract
Purpose
Because the nanocrystalline core is widely used in power electronic equipment, and the excitation waveform of its working mode is complex, the vibration at medium and high frequencies cannot be ignored. Therefore, this study aims to study the vibration mechanism of nanocrystalline strip and the vibration characteristics of nanocrystalline magnetic ring under different excitation waveforms.
Design/methodology/approach
First, the electromagnetic vibration mechanism between nanocrystalline strips is analyzed by finite element analysis, and the force of the magnetic ring with and without air gap is compared and analyzed. Then, the vibration of nanocrystalline magnetic ring under different excitation waveforms such as sine wave, triangular wave, symmetric rectangular wave and asymmetric rectangular wave is analyzed by experimental method. The acceleration time domain waveform measured by the experiment is analyzed by fast Fourier transform, and the vibration is analyzed according to the spectrum.
Findings
Because of the increase of magnetic flux leakage, the volume force density and the Maxwell force on the surface of the nanocrystalline magnetic ring will increase after the air gap is opened, resulting in the intensification of vibration. Under symmetric/asymmetric rectangular wave excitation, the vibration acceleration varies with the duty cycle. Due to the influence of harmonic excitation, the relationship between the main frequency of vibration and the excitation frequency is not two times, and its multiple decreases with the increase of excitation frequency.
Originality/value
The research and analysis of this paper can promote the application of new magnetic materials in electrical equipment in small and medium-sized and medium- to high-frequency fields.
Details
Keywords
Xin Meng, Qingyang Ren, Songqiang Xiao, Bin Chen and Hongfei Li
The purpose of this paper is to simulate the tension process of tension-type anchor cable and to explore the mechanical characteristics and tension-torsion coupling effect of…
Abstract
Purpose
The purpose of this paper is to simulate the tension process of tension-type anchor cable and to explore the mechanical characteristics and tension-torsion coupling effect of anchor cable subjected to tension.
Design/methodology/approach
ABAQUS numerical software is applied to construct the numerical models of tension-type anchor cables with different diameters. Through explicit contact, the characteristics of contact between grouting body-anchor cable and grouting body-rock mass are determined. Confining pressure is applied to the model through surface pressure, and drawing force is applied to the model by displacement loading so as to simulate the tension process of the anchor cable.
Findings
The results show that the stress is transmitted in both axial and radial directions in the anchorage section and distributed in a cone. The shear stress in the grouting body is unevenly distributed, and its peak value increases with the rise in confining pressure and anchor cable diameter. The stress characteristics of torque and axial force are basically consistent and evenly distributed in the free section; they gradually decrease in the anchorage section. Due to the tension-torsion coupling effect, the internal stress characteristics of the anchor cable structure vary. On average, the anchorage performance of each anchor cable model is improved by 6.19%.
Originality/value
The proposed method of numerical modelling is effective in addressing the interface contact between the anchor cable and the grouting body and in solving the problem with convergence of calculation. Compared with the indoor test, this method is more suited to collecting the internal mechanical data of the anchor body.
Details
Keywords
Bin Chen, Song Cen, Andrew R. Barron, D.R.J. Owen and Chenfeng Li
The purpose of this paper is to systematically investigate the fluid lag phenomena and its influence in the hydraulic fracturing process, including all stages of fluid-lag…
Abstract
Purpose
The purpose of this paper is to systematically investigate the fluid lag phenomena and its influence in the hydraulic fracturing process, including all stages of fluid-lag evolution, the transition between different stages and their coupling with dynamic fracture propagation under common conditions.
Design/methodology/approach
A plane 2D model is developed to simulate the complex evolution of fluid lag during the propagation of a hydraulic fracture driven by an impressible Newtonian fluid. Based on the finite element method, a fully implicit solution scheme is proposed to solve the strongly coupled rock deformation, fluid flow and fracture propagation. Using the proposed model, comprehensive parametric studies are performed to examine the evolution of fluid lag in various geological and operational conditions.
Findings
The numerical simulations predict that the lag ratio is around 5% or even lower at the beginning stage of hydraulic fracture under practical geological conditions. With the fracture propagation, the lag ratio keeps decreasing and can be ignored in the late stage of hydraulic fracturing for typical parameter combinations. On the numerical aspect, whether the fluid lag can be ignored depends not only on the lag ratio but also on the minimum mesh size used for fluid flow. In addition, an overall mixed-mode fracture propagation factor is proposed to describe the relationship between diverse parameters and fracture curvature.
Research limitations/implications
In this study, relatively simple physical models such as linear elasticity for solid, Newtonian model for fluid and linear elasticity fracture mechanics for fracture are used. The current model does not account for such effects like leak off, poroelasticity and softening of rock formations, which may also visibly affect the fluid lag depending on specific reservoir conditions.
Originality/value
This study helps to understand the effect of fluid lag during hydraulic fracturing processes and provides numerical experience in dealing with the fluid lag with finite element simulation.
Details