Search results

1 – 4 of 4
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 6 March 2023

Bibo Yao, Zhenhua Li, Baoren Teng and Jing Liu

Laser powder bed fusion (LPBF) can be used to fabricate complex extrusion die without the limitation of structures. Layer-by-layer processing leads to differences in…

128

Abstract

Purpose

Laser powder bed fusion (LPBF) can be used to fabricate complex extrusion die without the limitation of structures. Layer-by-layer processing leads to differences in microstructures and wear properties. This study aims to investigate the microstructure evolution and effects of tungsten carbide (WC) on the wear properties of LPBF-printed 18Ni300.

Design/methodology/approach

Economical spherical granulation-sintering-deoxygenation (GSD) WC-reinforced 18Ni300 steel matrix composites were produced by LPBF from powder mixtures of WC and 18Ni300. The effects of WC contents on anisotropic microstructures and wear properties of the composites were investigated.

Findings

The relative density is more than 99% for all the composites except 25% WC/18Ni300 composite. The grain sizes distributed on the top cross-section are smaller than those on the side cross-section. After adding WC particles, more high-angle grain boundaries and larger Schmid factor generate, and deformed grains decrease. With increasing WC contents, the hardness first decreases and then increases but the wear volume loss decreases. The side cross-section of the composite has higher hardness and better wear resistance. The 18Ni300 exhibits adhesive wear accompanying with abrasive wear, while plowing and fatigue wear are the predominant wear mechanisms of the composites.

Originality/value

Economical spherical GSD WC particles can be used to improve the wear resistance. The novel WC/18Ni300 composites are suitable for the application under the abrasive wear condition with low stress.

Details

Rapid Prototyping Journal, vol. 29 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 1 January 2006

Andreas Gagel, Christian M¨ller and Karl Schulte

The stiffness and damage evolution in a quasi‐static tensile loaded non‐crimp fabric reinforced epoxy was measured. To determine the effective stiffness of the damaged material…

117

Abstract

The stiffness and damage evolution in a quasi‐static tensile loaded non‐crimp fabric reinforced epoxy was measured. To determine the effective stiffness of the damaged material numerically a finite element analysis was performed. The finite element analysis bases solely on the measured ±45° and 90°‐ crack densities and on ply properties calculated by the Rule of Mixtures. The measured and calculated effective tensile stiffness were compared and a fair agreement could be found.

Details

Multidiscipline Modeling in Materials and Structures, vol. 2 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Available. Content available
Article
Publication date: 17 August 2012

415

Abstract

Details

Grey Systems: Theory and Application, vol. 2 no. 2
Type: Research Article
ISSN: 2043-9377

Access Restricted. View access options
Article
Publication date: 7 December 2020

Rafael Moreno, Diego Carou, Daniel Carazo-Álvarez and Munish Kumar Gupta

3D printing is gaining attention in the medical sector for the development of customized solutions for a wide range of applications such as temporary external implants. The…

205

Abstract

Purpose

3D printing is gaining attention in the medical sector for the development of customized solutions for a wide range of applications such as temporary external implants. The materials used for the manufacturing process are critical, as they must provide biocompatibility and adequate mechanical properties. This study aims to evaluate and model the influence of the printing parameters on the mechanical properties of two biocompatible materials.

Design/methodology/approach

In this study, the mechanical properties of 3D-printed specimens of two biocompatible materials (ABS medical and PLActive) were evaluated. The influence of several printing parameters (infill density, raster angle and layer height) was studied and modelled on three response variables: ultimate tensile strength, deformation at the ultimate tensile strength and Young’s modulus. Therefore, statistical models were developed to predict the mechanical responses based on the selected printing parameters.

Findings

The used methodology allowed obtaining compact models that show good fit, particularly, for both the ultimate tensile strength and Young’s modulus. Regarding the deformation at ultimate tensile strength, this output was found to be influenced by more factors and interactions, resulting in a slightly less precise model. In addition, the influence of the printing parameters was discussed in the work.

Originality/value

The presented paper proposed the use of statistical models to select the printing parameters (infill density, raster angle and layer height) to optimize the mechanical response of external medical aids. The models will help users, researchers and firms to develop optimized solutions that can reduce material costs and printing time but guaranteeing the mechanical response of the parts.

Details

Rapid Prototyping Journal, vol. 27 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 4 of 4
Per page
102050