Search results

1 – 4 of 4
Article
Publication date: 11 June 2018

Rosy Pradhan, Santosh Kumar Majhi and Bibhuti Bhusan Pati

Now days, various techniques are used for controlling the plants. New ideas are evolving day by day to get better-quality control for various industrial processes to produce…

Abstract

Purpose

Now days, various techniques are used for controlling the plants. New ideas are evolving day by day to get better-quality control for various industrial processes to produce high-quality products. Currently, the focus of this research is being emphasized on application of nature-inspired algorithms in control systems. The purpose of this paper is to apply a nature-inspired algorithm called Ant Lion Optimizer (ALO) for the design of proportional-integrator-derivative (PID) controller for an automatic voltage regulator (AVR) system.

Design/methodology/approach

For the design of the PID controller, the ALO algorithm is considered as a designing tool for obtaining the optimal values of the controller parameter. All the simulations are carried out in Simulink/MATLAB environment. A comparative study is carried out with some modern nature-inspired algorithm to describe the advantages of this tuning method.

Findings

The proposed method has superiority value in transient and frequency domain analysis than the other published heuristic optimization algorithms. The presented approach has almost no variation in transient response when varying time constants of the system parameter, such as exciter, generator, amplifier and sensor from −50 per cent to +50 per cent. In addition, the close loop system is robust against any disturbances such as input–output disturbances and parametric uncertainty, as the sensitivity values are nearly equal to one.

Originality/value

The proposed method presents the design and performance analysis of proportional integral derivate (PID) controller for an AVR system using the recently proposed ALO.

Details

World Journal of Engineering, vol. 15 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 September 2020

Madhusmita Panda, Bikramaditya Das, Bidyadhar Subudhi and Bibhuti Bhusan Pati

In this paper, an adaptive fuzzy sliding mode controller (AFSMC) is developed for the formation control of a team of autonomous underwater vehicles (AUVs) subjected to unknown…

Abstract

Purpose

In this paper, an adaptive fuzzy sliding mode controller (AFSMC) is developed for the formation control of a team of autonomous underwater vehicles (AUVs) subjected to unknown payload mass variations during their mission.

Design/methodology/approach

A sliding mode controller (SMC) is designed to drive the state trajectories of the AUVs to a switching surface in the state space. The payload mass variation results in parameter variation in AUV dynamics leading to actuator failure. This further leads to loss of communication among the members of the team. Hence, an adaptive SMC based on fuzzy logic is developed to maintain the coordinated motion of AUVs with payload mass variation.

Findings

The results are obtained by employing adaptive SMC for AUVs with and without payload variations and are compared. It is observed that the proposed adaptive SMC exhibits improved performance and tracks the desired trajectory in less time even with variation in the payload. The adaptive fuzzy control algorithm is developed to handle variation in payload mass variation. Lyapunov theory is used to establish stability of AFSMC controller.

Research limitations/implications

Perfect alignment is assumed between centres of gravity (OG) and buoyancy (OB), thus AUVs maintaining horizontal stability during motion. The AUVs’ body centres are aligned with centres of gravity (OG), thus the distance vector being rg = [0,0,0]T. As it is a tracking problem, sway motion cannot be neglected as the AUVs are travelling in a curved locus, hence susceptible to Coriolis and centripetal forces. The AUV is underactuated as only two thrusters at the stern plate that are employed for the surge and yaw controls and error in Y- direction are controlled by adjusting control input in surge and heave direction. Control inputs to the thruster are constants, and depth control is achieved by adjusting the rudder angle.

Practical implications

AUVs are employed in military mission or surveys, and they carry heavy weapons or instrument to be deployed at or picked from specific locations. Such tasks lead to variation in payload, causing overall mass variation during an AUV’s motion. A sudden change in the mass after an AUV release or pick load results in variation in depth and average velocity.

Social implications

The proposed controller can be useful for military missions for carrying warfare and hydrographic surveys for deploying instruments.

Originality/value

A proposed non-linear SMC has been designed, and its performances have been verified in terms of tracking error in X, Y and Z directions. An adaptive fuzzy SMC has been modelled using quantized state information to compensate payload variation. The stability of AFSMC controller is established by using Lyapunov theorem, and reachability of the sliding surface is ensured.

Details

International Journal of Intelligent Unmanned Systems, vol. 9 no. 2
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 1 May 2024

Mamun Mishra and Bibhuti Bhusan Pati

Islanding detection has become a serious concern due to the extensive integration of renewable energy sources. The non-detection zone (NDZ) and system-specific applicability…

Abstract

Purpose

Islanding detection has become a serious concern due to the extensive integration of renewable energy sources. The non-detection zone (NDZ) and system-specific applicability, which are the two major issues with the islanding detection methods, are addressed here. The purpose of this paper is to devise an islanding detection method with zero NDZ and, which will be applicable to all types of renewable energy sources using the sequence components of the point of common coupling voltage.

Design/methodology/approach

Here, a parameter using the sequence components is derived to devise an islanding detection method. The parameter derived from the sequence components of point of common coupling voltage is analysed using wavelet transform. Various operating conditions, such as islanding and non-islanding, are considered for several test systems to evaluate the performance of the proposed method. All the simulations are carried out in Simulink/MATLAB environment.

Findings

The results showed that the proposed method has zero NDZ for both inverter- and synchronous generator-based renewable energy sources. In addition, the proposed method works satisfactorily as per the IEEE 1547 standards requirement.

Originality/value

Performance of the proposed method has been tested in several test systems and is found to be better than some conventional methods.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 11 May 2015

Bikramaditya Das, Bidyadhar Subudhi and Bibhuti Bhusan Pati

The purpose of this paper is to propose development of a formation control algorithm by employing a nonlinear observer for compensating the delay in the sensor signal transmission…

Abstract

Purpose

The purpose of this paper is to propose development of a formation control algorithm by employing a nonlinear observer for compensating the delay in the sensor signal transmission to the controller arising due to packet dropout in acoustic medium.

Design/methodology/approach

A robust control law is developed using the sliding mode approach integrated with a communication consensus algorithm for achieving cooperative motion of acoustic underwater vehicles in a group ensuring the transfer of information among the AUVs. In acoustic medium, inter-vehicle communication is challenging for a group of AUVs deployed in formation because underwater channel encounter a number of constraints such as low data rate, packet delays and dropouts.

Findings

It is observed that the sliding mode control-unscented Kalman filter formation control exhibits superior control performance such as mitigating larger initial error of estimation and removing the use of the Jacobian matrices among the three controllers developed. The proposed nonlinear observer estimates the un-measureable states such as position in x, y and z-axes, heading, rudder and sturn angle, needed for generating the formation control. A simulation setup is realized to demonstrate the performance of the proposed observer-based formation controller. Simulations were performed in MATLAB and the obtained results are analysed and compared which envisage that the proposed control algorithm provides efficient formation control under the acoustic communication constraints.

Originality/value

Development of observer for achieving formation control of AUVs in underwater area – common reference velocity and error signals being available to all cooperating AUVs – UKO performs better based on initial error estimation and tracking the same path in shallow water area.

Details

International Journal of Intelligent Unmanned Systems, vol. 3 no. 2/3
Type: Research Article
ISSN: 2049-6427

Keywords

1 – 4 of 4