Search results

1 – 1 of 1
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 31 May 2011

Marie de Rochambeau, Mohamed Ichchou and Bernard Troclet

The purpose of this paper is to extend statistical energy analysis (SEA)‐like modeling to fluid‐structure coupled systems.

241

Abstract

Purpose

The purpose of this paper is to extend statistical energy analysis (SEA)‐like modeling to fluid‐structure coupled systems.

Design/methodology/approach

An equivalent approach of aerodynamic loads is applied to a SEA‐like modeling of a panel‐cavity coupled system with rain‐on‐the‐roof excitation. Two aerodynamic excitations are presented: turbulent boundary layer (TBL) and diffuse field excitation. The energetic description of the coupled system is studied with both aerodynamic excitations, taking in account the coincidence effects. In order to extent the approach to more general systems, some parameters of the coupled system are also modified and the accuracy of the coupled system modeling is investigated.

Findings

The boundary conditions of the panel and the coupling strength between the panel and the cavity have been modified. As it was expected, the accuracy of equivalent approach is shown to be independent of such modifications. The interest of such calculation is thus highlighted: modelings of systems and aerodynamic excitations are independent, and can be treated separately.

Originality/value

This result is interesting in the space industry, for launch vehicles are excited by different types of random excitations. Those excitations can be modeled by SEA‐like with low calculation time and memory and applied to a unique system modeling.

Details

Engineering Computations, vol. 28 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 1 of 1
Per page
102050