Benjamin Hellenborn, Oscar Eliasson, Ibrahim Yitmen and Habib Sadri
The purpose of this study is to identify the key data categories and characteristics defined by asset information requirements (AIR) and how this affects the development and…
Abstract
Purpose
The purpose of this study is to identify the key data categories and characteristics defined by asset information requirements (AIR) and how this affects the development and maintenance of an asset information model (AIM) for a blockchain-based digital twin (DT).
Design/methodology/approach
A mixed-method approach involving qualitative and quantitative analysis was used to gather empirical data through semistructured interviews and a digital questionnaire survey with an emphasis on AIR for blockchain-based DTs from a data-driven predictive analytics perspective.
Findings
Based on the analysis of results three key data categories were identified, core data, static operation and maintenance (OM) data, and dynamic OM data, along with the data characteristics required to perform data-driven predictive analytics through artificial intelligence (AI) in a blockchain-based DT platform. The findings also include how the creation and maintenance of an AIM is affected in this context.
Practical implications
The key data categories and characteristics specified through AIR to support predictive data-driven analytics through AI in a blockchain-based DT will contribute to the development and maintenance of an AIM.
Originality/value
The research explores the process of defining, delivering and maintaining the AIM and the potential use of blockchain technology (BCT) as a facilitator for data trust, integrity and security.
Details
Keywords
Diego Espinosa Gispert, Ibrahim Yitmen, Habib Sadri and Afshin Taheri
The purpose of this research is to develop a framework of an ontology-based Asset Information Model (AIM) for a Digital Twin (DT) platform and enhance predictive maintenance…
Abstract
Purpose
The purpose of this research is to develop a framework of an ontology-based Asset Information Model (AIM) for a Digital Twin (DT) platform and enhance predictive maintenance practices in building facilities that could enable proactive and data-driven decision-making during the Operation and Maintenance (O&M) process.
Design/methodology/approach
A scoping literature review was accomplished to establish the theoretical foundation for the current investigation. A study on developing an ontology-based AIM for predictive maintenance in building facilities was conducted. Semi-structured interviews were conducted with industry professionals to gather qualitative data for ontology-based AIM framework validation and insights.
Findings
The research findings indicate that while the development of ontology faced challenges in defining missing entities and relations in the context of predictive maintenance, insights gained from the interviews enabled the establishment of a comprehensive framework for ontology-based AIM adoption in the Facility Management (FM) sector.
Practical implications
The proposed ontology-based AIM has the potential to enable proactive and data-driven decision-making during the process, optimizing predictive maintenance practices and ultimately enhancing energy efficiency and sustainability in the building industry.
Originality/value
The research contributes to a practical guide for ontology development processes and presents a framework of an Ontology-based AIM for a Digital Twin platform.