Search results

1 – 5 of 5
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 14 July 2022

Pratyush N. Sharma, Benjamin D. Liengaard, Joseph F. Hair, Marko Sarstedt and Christian M. Ringle

Researchers often stress the predictive goals of their partial least squares structural equation modeling (PLS-SEM) analyses. However, the method has long lacked a statistical…

3323

Abstract

Purpose

Researchers often stress the predictive goals of their partial least squares structural equation modeling (PLS-SEM) analyses. However, the method has long lacked a statistical test to compare different models in terms of their predictive accuracy and to establish whether a proposed model offers a significantly better out-of-sample predictive accuracy than a naïve benchmark. This paper aims to address this methodological research gap in predictive model assessment and selection in composite-based modeling.

Design/methodology/approach

Recent research has proposed the cross-validated predictive ability test (CVPAT) to compare theoretically established models. This paper proposes several extensions that broaden the scope of CVPAT and explains the key choices researchers must make when using them. A popular marketing model is used to illustrate the CVPAT extensions’ use and to make recommendations for the interpretation and benchmarking of the results.

Findings

This research asserts that prediction-oriented model assessments and comparisons are essential for theory development and validation. It recommends that researchers routinely consider the application of CVPAT and its extensions when analyzing their theoretical models.

Research limitations/implications

The findings offer several avenues for future research to extend and strengthen prediction-oriented model assessment and comparison in PLS-SEM.

Practical implications

Guidelines are provided for applying CVPAT extensions and reporting the results to help researchers substantiate their models’ predictive capabilities.

Originality/value

This research contributes to strengthening the predictive model validation practice in PLS-SEM, which is essential to derive managerial implications that are typically predictive in nature.

Details

European Journal of Marketing, vol. 57 no. 6
Type: Research Article
ISSN: 0309-0566

Keywords

Available. Open Access. Open Access
Article
Publication date: 8 February 2024

Joseph F. Hair, Pratyush N. Sharma, Marko Sarstedt, Christian M. Ringle and Benjamin D. Liengaard

The purpose of this paper is to assess the appropriateness of equal weights estimation (sumscores) and the application of the composite equivalence index (CEI) vis-à-vis

11839

Abstract

Purpose

The purpose of this paper is to assess the appropriateness of equal weights estimation (sumscores) and the application of the composite equivalence index (CEI) vis-à-vis differentiated indicator weights produced by partial least squares structural equation modeling (PLS-SEM).

Design/methodology/approach

The authors rely on prior literature as well as empirical illustrations and a simulation study to assess the efficacy of equal weights estimation and the CEI.

Findings

The results show that the CEI lacks discriminatory power, and its use can lead to major differences in structural model estimates, conceals measurement model issues and almost always leads to inferior out-of-sample predictive accuracy compared to differentiated weights produced by PLS-SEM.

Research limitations/implications

In light of its manifold conceptual and empirical limitations, the authors advise against the use of the CEI. Its adoption and the routine use of equal weights estimation could adversely affect the validity of measurement and structural model results and understate structural model predictive accuracy. Although this study shows that the CEI is an unsuitable metric to decide between equal weights and differentiated weights, it does not propose another means for such a comparison.

Practical implications

The results suggest that researchers and practitioners should prefer differentiated indicator weights such as those produced by PLS-SEM over equal weights.

Originality/value

To the best of the authors’ knowledge, this study is the first to provide a comprehensive assessment of the CEI’s usefulness. The results provide guidance for researchers considering using equal indicator weights instead of PLS-SEM-based weighted indicators.

Details

European Journal of Marketing, vol. 58 no. 13
Type: Research Article
ISSN: 0309-0566

Keywords

Available. Open Access. Open Access
Article
Publication date: 28 May 2024

Joe F. Hair, Marko Sarstedt, Christian M. Ringle, Pratyush N. Sharma and Benjamin Dybro Liengaard

This paper aims to discuss recent criticism related to partial least squares structural equation modeling (PLS-SEM).

16142

Abstract

Purpose

This paper aims to discuss recent criticism related to partial least squares structural equation modeling (PLS-SEM).

Design/methodology/approach

Using a combination of literature reviews, empirical examples, and simulation evidence, this research demonstrates that critical accounts of PLS-SEM paint an overly negative picture of PLS-SEM’s capabilities.

Findings

Criticisms of PLS-SEM often generalize from boundary conditions with little practical relevance to the method’s general performance, and disregard the metrics and analyses (e.g., Type I error assessment) that are important when assessing the method’s efficacy.

Research limitations/implications

We believe the alleged “fallacies” and “untold facts” have already been addressed in prior research and that the discussion should shift toward constructive avenues by exploring future research areas that are relevant to PLS-SEM applications.

Practical implications

All statistical methods, including PLS-SEM, have strengths and weaknesses. Researchers need to consider established guidelines and recent advancements when using the method, especially given the fast pace of developments in the field.

Originality/value

This research addresses criticisms of PLS-SEM and offers researchers, reviewers, and journal editors a more constructive view of its capabilities.

Details

European Journal of Marketing, vol. 58 no. 13
Type: Research Article
ISSN: 0309-0566

Keywords

Access Restricted. View access options
Article
Publication date: 6 August 2020

Wynne Chin, Jun-Hwa Cheah, Yide Liu, Hiram Ting, Xin-Jean Lim and Tat Huei Cham

Partial least squares structural equation modeling (PLS-SEM) has become popular in the information systems (IS) field for modeling structural relationships between latent…

4509

Abstract

Purpose

Partial least squares structural equation modeling (PLS-SEM) has become popular in the information systems (IS) field for modeling structural relationships between latent variables as measured by manifest variables. However, while researchers using PLS-SEM routinely stress the causal-predictive nature of their analyses, the model evaluation assessment relies exclusively on criteria designed to assess the path model's explanatory power. To take full advantage of the purpose of causal prediction in PLS-SEM, it is imperative for researchers to comprehend the efficacy of various quality criteria, such as traditional PLS-SEM criteria, model fit, PLSpredict, cross-validated predictive ability test (CVPAT) and model selection criteria.

Design/methodology/approach

A systematic review was conducted to understand empirical studies employing the use of the causal prediction criteria available for PLS-SEM in the database of Industrial Management and Data Systems (IMDS) and Management Information Systems Quarterly (MISQ). Furthermore, this study discusses the details of each of the procedures for the causal prediction criteria available for PLS-SEM, as well as how these criteria should be interpreted. While the focus of the paper is on demystifying the role of causal prediction modeling in PLS-SEM, the overarching aim is to compare the performance of different quality criteria and to select the appropriate causal-predictive model from a cohort of competing models in the IS field.

Findings

The study found that the traditional PLS-SEM criteria (goodness of fit (GoF) by Tenenhaus, R2 and Q2) and model fit have difficulty determining the appropriate causal-predictive model. In contrast, PLSpredict, CVPAT and model selection criteria (i.e. Bayesian information criterion (BIC), BIC weight, Geweke–Meese criterion (GM), GM weight, HQ and HQC) were found to outperform the traditional criteria in determining the appropriate causal-predictive model, because these criteria provided both in-sample and out-of-sample predictions in PLS-SEM.

Originality/value

This research substantiates the use of the PLSpredict, CVPAT and the model selection criteria (i.e. BIC, BIC weight, GM, GM weight, HQ and HQC). It provides IS researchers and practitioners with the knowledge they need to properly assess, report on and interpret PLS-SEM results when the goal is only causal prediction, thereby contributing to safeguarding the goal of using PLS-SEM in IS studies.

Details

Industrial Management & Data Systems, vol. 120 no. 12
Type: Research Article
ISSN: 0263-5577

Keywords

Access Restricted. View access options
Article
Publication date: 21 February 2024

Moh'd Anwer AL-Shboul

This paper aims to analyze the relationships between human resource supply chain management (HRSCM), corporate culture (CC) and the code of business ethics (CBE) in the MENA…

224

Abstract

Purpose

This paper aims to analyze the relationships between human resource supply chain management (HRSCM), corporate culture (CC) and the code of business ethics (CBE) in the MENA region.

Design/methodology/approach

In this study, the author adopted a quantitative approach through an online Google Form survey for the data-gathering process. All questionnaires were distributed to the manufacturing and service firms that are listed in the Chambers of the Industries of Jordan, Saudi Arabia, Morocco and Egypt in the MENA region using a simple random sampling method. About 567 usable and valid responses were retrieved out of 2,077 for analysis, representing a 27.3% response rate. The sample unit for analysis included all middle- and senior-level managers and employees within manufacturing and service firms. The conceptual model was tested using a hypothesis-testing deductive approach. The findings are based on covariance-based analysis and structural equation modeling (SEM) using PLS-SEM software. The author performed convergent validity and discriminant validity tests, and bootstrapping was also applied.

Findings

The empirical results display a significant and positive association between HRSCM and the CBE. The CC and the CBE tend to be positively and significantly related. Therefore, HRSCM can play a key role in boosting and applying the CBE in firms. For achieving the firm purposes, more attention to the HR personnel should be paid to implement the CBE. The high importance of the CBE becomes necessary for both the department and the firm.

Practical implications

Such results can provide insightful information for HR personnel, managers and leaders to encourage them to develop and maintain an effective corporate code of conduct within their organizations.

Originality/value

This paper tries to explore the linkages between HRSCM, CC and CBE in the Middle East region due to the lack of research available that analyzes the relationship between them. Not only that, but it also offers great implications for Middle Eastern businesses.

Details

Journal of Information, Communication and Ethics in Society, vol. 22 no. 1
Type: Research Article
ISSN: 1477-996X

Keywords

1 – 5 of 5
Per page
102050