Search results

1 – 10 of over 8000
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Book part
Publication date: 19 November 2014

Enrique Martínez-García and Mark A. Wynne

We investigate the Bayesian approach to model comparison within a two-country framework with nominal rigidities using the workhorse New Keynesian open-economy model of…

Abstract

We investigate the Bayesian approach to model comparison within a two-country framework with nominal rigidities using the workhorse New Keynesian open-economy model of Martínez-García and Wynne (2010). We discuss the trade-offs that monetary policy – characterized by a Taylor-type rule – faces in an interconnected world, with perfectly flexible exchange rates. We then use posterior model probabilities to evaluate the weight of evidence in support of such a model when estimated against more parsimonious specifications that either abstract from monetary frictions or assume autarky by means of controlled experiments that employ simulated data. We argue that Bayesian model comparison with posterior odds is sensitive to sample size and the choice of observable variables for estimation. We show that posterior model probabilities strongly penalize overfitting, which can lead us to favor a less parameterized model against the true data-generating process when the two become arbitrarily close to each other. We also illustrate that the spillovers from monetary policy across countries have an added confounding effect.

Access Restricted. View access options
Book part
Publication date: 1 January 2008

Arnold Zellner

After briefly reviewing the past history of Bayesian econometrics and Alan Greenspan's (2004) recent description of his use of Bayesian methods in managing policy-making risk…

Abstract

After briefly reviewing the past history of Bayesian econometrics and Alan Greenspan's (2004) recent description of his use of Bayesian methods in managing policy-making risk, some of the issues and needs that he mentions are discussed and linked to past and present Bayesian econometric research. Then a review of some recent Bayesian econometric research and needs is presented. Finally, some thoughts are presented that relate to the future of Bayesian econometrics.

Details

Bayesian Econometrics
Type: Book
ISBN: 978-1-84855-308-8

Access Restricted. View access options
Article
Publication date: 7 June 2021

Carol K.H. Hon, Chenjunyan Sun, Bo Xia, Nerina L. Jimmieson, Kïrsten A. Way and Paul Pao-Yen Wu

Bayesian approaches have been widely applied in construction management (CM) research due to their capacity to deal with uncertain and complicated problems. However, to date…

1087

Abstract

Purpose

Bayesian approaches have been widely applied in construction management (CM) research due to their capacity to deal with uncertain and complicated problems. However, to date, there has been no systematic review of applications of Bayesian approaches in existing CM studies. This paper systematically reviews applications of Bayesian approaches in CM research and provides insights into potential benefits of this technique for driving innovation and productivity in the construction industry.

Design/methodology/approach

A total of 148 articles were retrieved for systematic review through two literature selection rounds.

Findings

Bayesian approaches have been widely applied to safety management and risk management. The Bayesian network (BN) was the most frequently employed Bayesian method. Elicitation from expert knowledge and case studies were the primary methods for BN development and validation, respectively. Prediction was the most popular type of reasoning with BNs. Research limitations in existing studies mainly related to not fully realizing the potential of Bayesian approaches in CM functional areas, over-reliance on expert knowledge for BN model development and lacking guides on BN model validation, together with pertinent recommendations for future research.

Originality/value

This systematic review contributes to providing a comprehensive understanding of the application of Bayesian approaches in CM research and highlights implications for future research and practice.

Details

Engineering, Construction and Architectural Management, vol. 29 no. 5
Type: Research Article
ISSN: 0969-9988

Keywords

Access Restricted. View access options
Book part
Publication date: 12 November 2014

Matthew Lindsey and Robert Pavur

A Bayesian approach to demand forecasting to optimize spare parts inventory that requires periodic replenishment is examined relative to a non-Bayesian approach when the demand…

Abstract

A Bayesian approach to demand forecasting to optimize spare parts inventory that requires periodic replenishment is examined relative to a non-Bayesian approach when the demand rate is unknown. That is, optimal inventory levels are decided using these two approaches at consecutive time intervals. Simulations were conducted to compare the total inventory cost using a Bayesian approach and a non-Bayesian approach to a theoretical minimum cost over a variety of demand rate conditions including the challenging slow moving or intermittent type of spare parts. Although Bayesian approaches are often recommended, this study’s results reveal that under conditions of large variability across the demand rates of spare parts, the inventory cost using the Bayes model was not superior to that using the non-Bayesian approach. For spare parts with homogeneous demand rates, the inventory cost using the Bayes model for forecasting was generally lower than that of the non-Bayesian model. Practitioners may still opt to use the non-Bayesian model since a prior distribution for the demand does not need to be identified.

Details

Advances in Business and Management Forecasting
Type: Book
ISBN: 978-1-78441-209-8

Keywords

Access Restricted. View access options
Article
Publication date: 3 September 2024

Biplab Bhattacharjee, Kavya Unni and Maheshwar Pratap

Product returns are a major challenge for e-businesses as they involve huge logistical and operational costs. Therefore, it becomes crucial to predict returns in advance. This…

57

Abstract

Purpose

Product returns are a major challenge for e-businesses as they involve huge logistical and operational costs. Therefore, it becomes crucial to predict returns in advance. This study aims to evaluate different genres of classifiers for product return chance prediction, and further optimizes the best performing model.

Design/methodology/approach

An e-commerce data set having categorical type attributes has been used for this study. Feature selection based on chi-square provides a selective features-set which is used as inputs for model building. Predictive models are attempted using individual classifiers, ensemble models and deep neural networks. For performance evaluation, 75:25 train/test split and 10-fold cross-validation strategies are used. To improve the predictability of the best performing classifier, hyperparameter tuning is performed using different optimization methods such as, random search, grid search, Bayesian approach and evolutionary models (genetic algorithm, differential evolution and particle swarm optimization).

Findings

A comparison of F1-scores revealed that the Bayesian approach outperformed all other optimization approaches in terms of accuracy. The predictability of the Bayesian-optimized model is further compared with that of other classifiers using experimental analysis. The Bayesian-optimized XGBoost model possessed superior performance, with accuracies of 77.80% and 70.35% for holdout and 10-fold cross-validation methods, respectively.

Research limitations/implications

Given the anonymized data, the effects of individual attributes on outcomes could not be investigated in detail. The Bayesian-optimized predictive model may be used in decision support systems, enabling real-time prediction of returns and the implementation of preventive measures.

Originality/value

There are very few reported studies on predicting the chance of order return in e-businesses. To the best of the authors’ knowledge, this study is the first to compare different optimization methods and classifiers, demonstrating the superiority of the Bayesian-optimized XGBoost classification model for returns prediction.

Details

Journal of Systems and Information Technology, vol. 26 no. 4
Type: Research Article
ISSN: 1328-7265

Keywords

Access Restricted. View access options
Article
Publication date: 29 November 2019

A. George Assaf and Mike G. Tsionas

This paper aims to present several Bayesian specification tests for both in- and out-of-sample situations.

201

Abstract

Purpose

This paper aims to present several Bayesian specification tests for both in- and out-of-sample situations.

Design/methodology/approach

The authors focus on the Bayesian equivalents of the frequentist approach for testing heteroskedasticity, autocorrelation and functional form specification. For out-of-sample diagnostics, the authors consider several tests to evaluate the predictive ability of the model.

Findings

The authors demonstrate the performance of these tests using an application on the relationship between price and occupancy rate from the hotel industry. For purposes of comparison, the authors also provide evidence from traditional frequentist tests.

Research limitations/implications

There certainly exist other issues and diagnostic tests that are not covered in this paper. The issues that are addressed, however, are critically important and can be applied to most modeling situations.

Originality/value

With the increased use of the Bayesian approach in various modeling contexts, this paper serves as an important guide for diagnostic testing in Bayesian analysis. Diagnostic analysis is essential and should always accompany the estimation of regression models.

Details

International Journal of Contemporary Hospitality Management, vol. 32 no. 4
Type: Research Article
ISSN: 0959-6119

Keywords

Access Restricted. View access options
Article
Publication date: 5 July 2018

Harindranath R.M. and Jayanth Jacob

This paper aims to popularize the Bayesian methods among novice management researchers. The paper interprets the results of Bayesian method of confirmatory factor analysis (CFA)…

922

Abstract

Purpose

This paper aims to popularize the Bayesian methods among novice management researchers. The paper interprets the results of Bayesian method of confirmatory factor analysis (CFA), structural equation modelling (SEM), mediation and moderation analysis, with the intention that the novice researchers will apply this method in their research. The paper made an attempt in discussing various complex mathematical concepts such as Markov Chain Monte Carlo, Bayes factor, Bayesian information criterion and deviance information criterion (DIC), etc. in a lucid manner.

Design/methodology/approach

Data collected from 172 pharmaceutical sales representatives were used. The study will help the management researchers to perform Bayesian CFA, Bayesian SEM, Bayesian moderation analysis and Bayesian mediation analysis using SPSS AMOS software.

Findings

The interpretation of the results of Bayesian CFA, Bayesian SEM and Bayesian mediation analysis were discussed.

Practical implications

The management scholars are non-statisticians and are not much aware of the benefits offered by Bayesian methods. Hitherto, the management scholars use predominantly traditional SEM in validating their models empirically, and this study will give an exposure to “Bayesian statistics” that has practical advantages.

Originality/value

This is one paper, which discusses the following four concepts: Bayesian method of CFA, SEM, mediation and moderation analysis.

Access Restricted. View access options
Article
Publication date: 4 September 2019

S. Khodaygan and A. Ghaderi

The purpose of this paper is to present a new efficient method for the tolerance–reliability analysis and quality control of complex nonlinear assemblies where explicit assembly…

361

Abstract

Purpose

The purpose of this paper is to present a new efficient method for the tolerance–reliability analysis and quality control of complex nonlinear assemblies where explicit assembly functions are difficult or impossible to extract based on Bayesian modeling.

Design/methodology/approach

In the proposed method, first, tolerances are modelled as the random uncertain variables. Then, based on the assembly data, the explicit assembly function can be expressed by the Bayesian model in terms of manufacturing and assembly tolerances. According to the obtained assembly tolerance, reliability of the mechanical assembly to meet the assembly requirement can be estimated by a proper first-order reliability method.

Findings

The Bayesian modeling leads to an appropriate assembly function for the tolerance and reliability analysis of mechanical assemblies for assessment of the assembly quality, by evaluation of the assembly requirement(s) at the key characteristics in the assembly process. The efficiency of the proposed method by considering a case study has been illustrated and validated by comparison to Monte Carlo simulations.

Practical implications

The method is practically easy to be automated for use within CAD/CAM software for the assembly quality control in industrial applications.

Originality/value

Bayesian modeling for tolerance–reliability analysis of mechanical assemblies, which has not been previously considered in the literature, is a potentially interesting concept that can be extended to other corresponding fields of the tolerance design and the quality control.

Details

Assembly Automation, vol. 39 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Access Restricted. View access options
Book part
Publication date: 1 January 2008

Siddhartha Chib, William Griffiths, Gary Koop and Dek Terrell

Bayesian Econometrics is a volume in the series Advances in Econometrics that illustrates the scope and diversity of modern Bayesian econometric applications, reviews some recent…

Abstract

Bayesian Econometrics is a volume in the series Advances in Econometrics that illustrates the scope and diversity of modern Bayesian econometric applications, reviews some recent advances in Bayesian econometrics, and highlights many of the characteristics of Bayesian inference and computations. This first paper in the volume is the Editors’ introduction in which we summarize the contributions of each of the papers.

Details

Bayesian Econometrics
Type: Book
ISBN: 978-1-84855-308-8

Access Restricted. View access options
Book part
Publication date: 27 June 2023

Richa Srivastava and M A Sanjeev

Several inferential procedures are advocated in the literature. The most commonly used techniques are the frequentist and the Bayesian inferential procedures. Bayesian methods…

Abstract

Several inferential procedures are advocated in the literature. The most commonly used techniques are the frequentist and the Bayesian inferential procedures. Bayesian methods afford inferences based on small data sets and are especially useful in studies with limited data availability. Bayesian approaches also help incorporate prior knowledge, especially subjective knowledge, into predictions. Considering the increasing difficulty in data acquisition, the application of Bayesian techniques can be hugely beneficial to managers, especially in analysing limited data situations like a study of expert opinion. Another factor constraining the broader application of Bayesian statistics in business was computational power requirements and the availability of appropriate analytical tools. However, with the increase in computational power, connectivity and the development of appropriate software programmes, Bayesian applications have become more attractive. This chapter attempts to unravel the applications of the Bayesian inferential procedure in marketing management.

1 – 10 of over 8000
Per page
102050