Search results
1 – 7 of 7Benjamin Sunday Uzochukwu, Chinyere Cecilia Okeke, Joyce Ogwezi, Benedict Emunemu, Felicia Onibon, Bassey Ebenso, Tolib Mirzoev and Ghazala Mir
The importance of social exclusion and the disadvantage experienced by many minority ethnic and religious populations are rooted in SDG 10. To address this exclusion effectively…
Abstract
Purpose
The importance of social exclusion and the disadvantage experienced by many minority ethnic and religious populations are rooted in SDG 10. To address this exclusion effectively it is important to understand their key drivers. This paper aimed to establish the key drivers of exclusion and their outcomes in Nigeria.
Design/methodology/approach
The methods involved a scoping review of literature and stakeholder workshops that focused on drivers of social exclusion of religious and ethnic minorities in public institutions.
Findings
At the macro level, the drivers include ineffective centralized federal State, competition for resources and power among groups, geographic developmental divide and socio-cultural/religious issues. At the meso-level are institutional rules and competition for resources, stereotypes and misconceptions, barriers to access and service provision. At the micro-level are socio-economic status and health-seeking behaviour. The perceived impact of social exclusion included increasing illiteracy, lack of employment, deteriorating health care services, increased social vices, communal clashes and insurgencies and vulnerability to exploitation and humiliation. These drivers must be taken into consideration in the development of interventions for preventing or reducing social exclusion of ethnic and religious minorities from public services.
Originality/value
This is a case of co-production by all the stakeholders and a novel way for the identification of drivers of social exclusion in public services in Nigeria. It is the first step towards solving the problem of exclusion and has implications for the achievement of SDG 10 in Nigeria.
Details
Keywords
Anthony Ikechukwu Obike, Wilfred Emori, Hitler Louis, Godwin Ifeanyi Ogbuehi, Paul Chukwuleke Okonkwo and Victoria Mfon Bassey
The purpose of this paper is to study the adsorption properties of a proven traditional medicine of West Africa origin, Alstonia boonei with an attempt to evaluate its application…
Abstract
Purpose
The purpose of this paper is to study the adsorption properties of a proven traditional medicine of West Africa origin, Alstonia boonei with an attempt to evaluate its application in the corrosion protection of mild steel in 5 M H2SO4 and 5 M HCl.
Design/methodology/approach
Phytochemical screening and Fourier transform infrared spectroscopy analysis were used to characterize the methanolic extract of the plant. Gravimetry, gasometry and electrochemical techniques were used in the corrosion inhibition studies of the extract and computational studies were used to describe the electronic and adsorption properties of eugenol, the most abundant phytochemical in Alstonia boonei.
Findings
The extract acted as a mixed-type inhibitor in both acidic solutions, with improved inhibition efficiency achieved with increasing concentration. While the efficiency increased with temperature for the HCl system, it decreased for the H2SO4 system. The mechanism of adsorption proposed for Alstonia boonei was chemisorption in the HCl system and physisorption in the H2SO4 system, and the adsorptions obeyed Langmuir isotherm at low temperatures. Computational parameters showed that eugenol, being a representative of Alstonia boonei, possesses excellent adsorption properties and has the potential to compete with other established plant-based corrosion inhibitors.
Research limitations/implications
As opposed to pure compounds with distinctive corrosion effects, plant extracts are generally composed of a myriad of phytoconstituents that competitively promote or inhibit the corrosion process and their net effect is evident as inhibition efficiencies. This is, therefore, the main research limitation associated with the corrosion inhibition study of Alstonia boonei.
Originality/value
Being very rich in antioxidant properties by its proven curative and preventive effects for diseases, the interest was stimulated towards the attractive results that abound from its corrosion protection of metals via its anti-oxidation route.
Details
Keywords
Kayla Halsey, Salameh Alarood, Mohammed Nawaiseh and Ghazala Mir
Refugees commonly face inequitable access to health care services in their host country. This study aimed to identify factors influence refugee access to health services and to…
Abstract
Purpose
Refugees commonly face inequitable access to health care services in their host country. This study aimed to identify factors influence refugee access to health services and to assess perceptions of barriers to health care for different refugee groups in Jordan.
Design/methodology/approach
In-depth interviews were combined with document analysis and analyzed using thematic and framework methods.
Findings
Findings highlighted inequitable access to health services between different refugee groups. Unlike Palestinian refugees from the West Bank, Palestinian refugees from Gaza faced financial barriers to access health care as a result of citizenship status, which affected their health insurance, referrals for health care and legal right to work. Syrian refugees similarly lacked Jordanian citizenship and health insurance and mainly depended on UNHCR for health services, though some were able to acquire work permits and pay for private care.
Originality/value
This study demonstrates a need for politically and economically appropriate policies to minimize the disparity of health care access among these refugee groups.
Details
Keywords
Chigoziri N. Njoku, Temple Uzoma Maduoma, Wilfred Emori, Rita Emmanuel Odey, Beshel M. Unimke, Emmanuel Yakubu, Cyril C. Anorondu, Daniel I. Udunwa, Onyinyechi C. Njoku and Kechinyere B. Oyoh
Corrosion is a major concern for many industries that use metals as structural or functional materials, and the use of corrosion inhibitors is a widely accepted strategy to…
Abstract
Purpose
Corrosion is a major concern for many industries that use metals as structural or functional materials, and the use of corrosion inhibitors is a widely accepted strategy to protect metals from deterioration in corrosive environments. Moreover, the toxic nature, non-biodegradability and price of most conventional corrosion inhibitors have encouraged the application of greener and more sustainable options, with natural and synthetic drugs being major actors. Hence, this paper aims to stress the capability of natural and synthetic drugs as manageable and sustainable, environmentally friendly solutions to the problem of metal corrosion.
Design/methodology/approach
In this review, the recent developments in the use of natural and synthetic drugs as corrosion inhibitors are explored in detail to highlight the key advancements and drawbacks towards the advantageous utilization of drugs as corrosion inhibitors.
Findings
Corrosion is a critical issue in numerous modern applications, and conventional strategies of corrosion inhibition include the use of toxic and environmentally harmful chemicals. As greener alternatives, natural compounds like plant extracts, essential oils and biopolymers, as well as synthetic drugs, are highlighted in this review. In addition, the advantages and disadvantages of these compounds, as well as their effectiveness in preventing corrosion, are discussed in the review.
Originality/value
This survey stresses on the most recent abilities of natural and synthetic drugs as viable and sustainable, environmentally friendly solutions to the problem of metal corrosion, thus expanding the general knowledge of green corrosion inhibitors.
Details
Keywords
Wilfred Emori, Paul C. Okonkwo, Hitler Louis, Ling Liu, Ernest C. Agwamba, Tomsmith Unimuke, Peter Okafor, Atowon D. Atowon, Anthony Ikechukwu Obike and ChunRu Cheng
Owing to the toxicity, biodegradability, and cost of most corrosion inhibitors, research attention is now focused on the development of environmentally benign, biodegradable…
Abstract
Purpose
Owing to the toxicity, biodegradability, and cost of most corrosion inhibitors, research attention is now focused on the development of environmentally benign, biodegradable, cheap, and efficient options. In consideration of these facts, chrysin, a phytocompound of Populus tomentosa (Chinese white poplar) has been isolated and investigated for its anticorrosion abilities on carbon steel in a mixed acid and chloride system. This highlights the main purpose of the study.
Design/methodology/approach
Chrysin was isolated from Populus tomentosa using column chromatography and characterized using Fourier Transform Infrared Spectroscopy and Nuclear Magnetic Resonance Spectroscopy. The investigations are outlined based on theory (Fukui indices, condensed density functional theory and molecular dynamic simulation) and experiments (electrochemical, gravimetry and surface morphology examinations).
Findings
Theoretical evaluations permitted the description of the adsorption characteristics, and molecular interactions and orientations of chrysin on Fe substrate. The interaction energy for protonated and neutral chrysin on Fe (110) were −149.10 kcal/mol and −143.28 kcal/mol, respectively. Moreover, experimental investigations showed that chrysin is a potent mixed-type corrosion inhibitor for steel, whose effectiveness depends on its surrounding temperature and concentration. The optimum inhibition efficiency of 78.7% after 24 h for 1 g/L chrysin at 298 K indicates that the performance of chrysin, as a pure compound, compares favorably with other phytocompounds and plant extracts investigated under similar conditions. However, the inhibition efficiency decreased to 62.5% and 51.8% at 318 K after 48 h and 72 h, respectively.
Originality/value
The novelty of this study relies on the usage of a pure compound in corrosion suppression investigation, thus eliminating the unknown influences obtainable by the presence of multi-phytocompounds in plant extracts, thereby advancing the commercialization of bio-based corrosion inhibitors.
Details
Keywords
Alexander I. Ikeuba, Christopher U. Sonde, Ifeatu E. Chukwudubem, Remigius C. Anozie, Benedict U. Ugi, Benedict Onyeachu, Okpo O. Ekerenam and Wilfred Emori
In line with current research efforts to develop eco-friendly strategies for corrosion mitigation, the purpose of this study is to appraise the anti-corrosion potential of…
Abstract
Purpose
In line with current research efforts to develop eco-friendly strategies for corrosion mitigation, the purpose of this study is to appraise the anti-corrosion potential of selected amino acids on magnesium corrosion in sodium chloride solutions.
Design/methodology/approach
The corrosion inhibition of magnesium in aqueous solutions in the presence of benign, eco-friendly and readily available amino acids (alanine, arginine, histidine, lysine, proline) were evaluated using electrochemical methods.
Findings
Amino acids suppressed magnesium corrosion rate in aqueous sodium chloride solutions. The order of inhibition efficiency (%IE) was as follows: alanine < arginine < histidine < lysine < proline. The open circuit potential shift with respect to the blank was less than 0.085 VSCE, indicating that the amino acids are mixed-type corrosion inhibitors. In addition, the %IE of the amino acids was inversely proportional to the molecular weight. The results obtained indicate that the amino acids can serve as sustainable eco-friendly corrosion inhibitors for magnesium with the best inhibition efficiency attributed to proline with an efficiency of 85.1%.
Originality/value
New information on the application of amino acids as green sustainable corrosion inhibitors is provided herein.
Details
Keywords
Justin C Emereole, Chigoziri N Njoku, Alexander I Ikeuba, Ifenyinwa C Ekeke, Emmanuel Yakubu, Ogbonna C Nkuzinna, Nnamdi A Nnodum and Madueke S Nwakaudu
This study aims to develop eco-friendly corrosion inhibitors for aluminum in acidic media by evaluating the corrosion inhibition properties of corn leaf extract (CLE) using…
Abstract
Purpose
This study aims to develop eco-friendly corrosion inhibitors for aluminum in acidic media by evaluating the corrosion inhibition properties of corn leaf extract (CLE) using response surface methodology (RSM) and experiments.
Design/methodology/approach
The RSM was combined with experiments to evaluate the corrosion inhibition properties of CLE on aluminum in acid media.
Findings
The effectiveness of the inhibition increased with increasing inhibitor concentration and time but decreased with increasing temperature. The corrosion inhibition mechanism revealed the corrosion process is spontaneous exothermic physical adsorption. Thermodynamic parameters revealed an activation energy between 32.1 and 24.7 kJ/mol, energy of adsorption between −14.53 and −65.07 and Gibbs free energy of −10.12 kJ/mol which indicated the CLE exothermically spontaneously physisorbed. A model was generated to estimate the effect of the process parameters (inhibitor concentration, reaction time and temperature) using the RSM. Optimization of the process factors was also carried out using the RSM. The percentage inhibition efficiency obtained experimentally (85.61%) was closely comparable to 84.89% obtained by the theoretical technique (RSM). The SEM observations of the inhibited and uninhibited Al samples demonstrated that CLE is an effective corrosion inhibitor for aluminum in acid media.
Originality/value
Results herein provide novel information on the possible application of CLEs as effective eco-friendly corrosion inhibitors.
Details