Search results

1 – 4 of 4
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 26 June 2019

Bartosz Gawron, Tomasz Białecki, Anna Janicka, Maciej Zawiślak and Aleksander Górniak

The purpose of this paper is to examine the toxicological impacts of exhaust generated during the combustion process of aviation fuel containing synthesized hydrocarbons.

278

Abstract

Purpose

The purpose of this paper is to examine the toxicological impacts of exhaust generated during the combustion process of aviation fuel containing synthesized hydrocarbons.

Design/methodology/approach

Tests on aircraft turbine engines in full scale are complex and expensive. Therefore, a miniature turbojet engine was used in this paper as a source of exhaust gases. Toxicity was tested using innovative BAT–CELL Bio–Ambient Cell method, which consists of determination of real toxic impact of the exhaust gases on the human lung A549 and mouse L929 cells. The research was of a comparative nature. The engine was powered by a conventional jet fuel and a blend of conventional jet fuel with synthesized hydrocarbons.

Findings

The results show that the BAT–CELL method allows determination of the real exhaust toxicity during the combustion process in a turbine engine. The addition of a synthetic component to conventional jet fuel affected the reduction of toxicity of exhaust gases. It was confirmed for both tested cell lines.

Originality/value

In the literature related to the area of aviation, numerous publications in the field of testing the emission of exhaust gaseous components, particulates or volatile organic compounds can be found. However, there is a lack of research related to the evaluation of the real exhaust toxicity. In addition, it appears that the data given in aviation sector, mainly related to the emission levels of gaseous exhaust components (CO, Nox and HC) and particulate matters, might be insufficient. To fully describe the engine exhaust emissions, they should be supplemented with additional tests, i.e. in terms of toxicity.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Access Restricted. View access options
Article
Publication date: 2 October 2017

Bartosz Gawron, Tomasz Białecki, Anna Janicka, Aleksander Górniak and Maciej Zawiślak

The purpose of this paper is to present an assessment method of the toxicity emission evaluation during combustion in the miniature turbojet engine.

303

Abstract

Purpose

The purpose of this paper is to present an assessment method of the toxicity emission evaluation during combustion in the miniature turbojet engine.

Design/methodology/approach

A small-scale turbojet engine was used for the research because measurements on real aircraft turbines are complex and expensive. The experiment was performed in accordance with innovative BAT – CELL Bio – Ambient Cell method which consists of determination of virtual toxic impact of the gas mixture on the living cells; it is therefore a direct method. The most significant innovation of this method is that, during the test, which consists of exposing the cells to the gas mixture, the cells are deprived of culture fluid.

Findings

The preliminary analysis shows that the method used here allows to determine the virtual impact of the gases on the human respiratory system and skin. It could be useful in defining the arduousness of an airport. The obtained results show that both of exhaust gases represent similar toxicity.

Practical implications

The new in vitro method allows to determine the virtual impact of the gases on the human respiratory system and skin. Significant potential for further research not only on the miniaturised engines, but also in the case of real objects, as this method does not have to be performed in a laboratory.

Originality/value

The work presents potential application of the innovatory method for exhaust gases toxicity evaluation in jet engines, which could be useful in defining the arduousness of an airport.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Available. Open Access. Open Access

Abstract

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 4 no. 1
Type: Research Article
ISSN: 2633-6596

Access Restricted. View access options
Article
Publication date: 2 December 2019

Bartosz Stanisław Przybyła, Radoslaw Przysowa and Zbigniew Zapałowicz

EC-135P2+ helicopters operated by Polish Medical Air Rescue are highly exposed to environmental particles entering engines when performing helicopter emergency medical services…

162

Abstract

Purpose

EC-135P2+ helicopters operated by Polish Medical Air Rescue are highly exposed to environmental particles entering engines when performing helicopter emergency medical services. This paper aims to assess the effectiveness of inlet barrier filters installed to protect the engines, including their impact on maintenance.

Design/methodology/approach

The organisation adopted a comprehensive set of measures to predict and limit the impact of dust ingestion including visual inspections, health management and engine trend monitoring based on ground power checks’ (GPC) results. Three alternative particle separation solutions were considered. Finally, helicopter inlets were modified to allow the selected filter system to be installed, which reduced the number of particles ingested by the engine and prevented from premature overhauls.

Findings

The analyses carried out enabled not only the selection of the optimal filtration solution and its seamless implementation into the fleet but also confirmed its efficiency. After installing the filters, engines’ lifetime is extended from 500 to 4,500 flight hours while operating costs and the number of maintenance tasks was reduced significantly.

Originality/value

Lessons learned from operational experience show that a well-matched particle separation system can mitigate accelerated engine deterioration even if the platform is continuously exposed to environmental particles. The remaining useful life of engines can be predicted using performance models and data from GPC.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 4 of 4
Per page
102050