Search results
1 – 2 of 2Mariusz Kowalski, Zdobyslaw Jan Goraj and Bartłomiej Goliszek
The purpose of this paper is to present the result of calculations that were performed to estimate the structural weight of the passenger aircraft using novel technological…
Abstract
Purpose
The purpose of this paper is to present the result of calculations that were performed to estimate the structural weight of the passenger aircraft using novel technological solution. Mass penalty resulting from the installation of the fuselage boundary layer ingestion device was needed in the CENTRELINE project to be able to estimate the real benefits of the applied technology.
Design/methodology/approach
This paper focusses on the finite element analysis (FEA) of the fuselage and wing primary load-carrying structures. Masses obtained in these analyses were used as an input for the total structural mass calculation based on semi-empirical equations.
Findings
Combining FEA with semi-empirical equations makes it possible to estimate the mass of structures at an early technology readiness level and gives the possibility of obtaining more accurate results than those obtained using only empirical formulas. The applied methodology allows estimating the mass in case of using unusual structural solutions, which are not covered by formulas available in the literature.
Practical implications
Accurate structural mass estimation is possible at an earlier design stage of the project based on the presented methodology, which allows for easier and less costly changes in designed aircrafts.
Originality/value
The presented methodology is an original method of mass estimation based on a two-track approach. The analytical formulas available in the literature have worked well for aeroplanes of conventional design, but thanks to the connection with FEA presented in this paper, it is possible to estimate the structure mass of aeroplanes using unconventional technological solutions.
Details
Keywords
Jacek Mieloszyk, Andrzej Tarnowski, Tomasz Goetzendorf-Grabowski, Mariusz Kowalski and Bartłomiej Goliszek
Aircraft structure mass estimation is a very important issue in aerospace. Multiple methods of different fidelity are available, which give results with varying accuracy…
Abstract
Purpose
Aircraft structure mass estimation is a very important issue in aerospace. Multiple methods of different fidelity are available, which give results with varying accuracy. Sometimes these methods are giving a high discrepancy of estimated mass compared to the real mass of the structure. The discrepancy is especially noticeable in the case of small aircraft with a composite structure. Their mass properties highly depend not only on the material but also on technology and the human factor. Moreover, methods of mass estimation for unmanned aerial vehicle (UAV) platforms are even less established and examined. The purpose of this paper is to present and discuss various methods of mass estimation.
Design/methodology/approach
The paper presents different procedures of mass estimation for small UAVs with a composite structure. Beginning from the simplest one, where mass is estimated basing on a single equation and finishing with a mass estimation based on finite element method model and three-dimensional computer-aided design model. The results from all methods are compared with the airworthy aircraft and conclusions are discussed.
Findings
Mass of flying aircraft was estimated with different methods and compared. It revealed levels of accuracy of the investigated methods. Moreover, the influence on structure mass of human factor, glueing and painting is underlined.
Practical implications
Mass of the structure is a key factor in aerospace, which influences the performance of the aircraft. Thorough knowledge about the accuracy of the mass estimation methods and possible sources of discrepancies in mass analyses provides an essential tool for designers, which can be used with confidence and allows for the development of new cutting-edge constructions.
Originality/value
There are very few comparisons of mass estimation methods with an actual mass of manufactured and functional airframes. Additionally, mass estimation inaccuracies based on technological issues are presented, which is seldom done.
Details