Search results
1 – 4 of 4Guotao Zhang, Zan Zhang, Zhaochang Wang, Yanhong Sun, Baohong Tong and Deyu Tu
The lubricating fluid stored in the porous matrix will spontaneously exude to supplement the lubricating film in the damaged area, thus ensuring the long-term self-lubricating…
Abstract
Purpose
The lubricating fluid stored in the porous matrix will spontaneously exude to supplement the lubricating film in the damaged area, thus ensuring the long-term self-lubricating function of the porous surface. To reveal the repair mechanism of oil film, it is necessary to understand the flow characteristics of oil in micropores. The purpose of this study guides the design of micropore structure to realize the rapid exudation of oil to the porous surface and the rapid repair of the lubricating film.
Design/methodology/approach
In this paper, cylindrical orifice, convergent orifice and divergent orifice were studied. The numerical model of lubricating oil exudation in micropores was established. The distribution characteristics of oil pressure, velocity and three-phase contact line in the process of oil exudation were investigated. The effects of different orifice shapes and orifice structure parameters on the pinning and spreading characteristics of oil droplet were analyzed. Then the internal mechanisms of oil droplet formation and spread on the orifice surface were summarized.
Findings
The results show that during the process of oil exudation, the three-phase contact line of the oil drop is pinned once at the edge of the cylindrical and convergent orifice. Compared with the three orifice structures, the inlet pressure of the oil drop is low, and the oil velocity at the pinning point is stable in the divergent orifice. Resulting in favorable oil exudation. It is easier for oil droplet to depin by appropriately reducing the wall wetting angle, increasing the aperture or controlling the wall inclination angle. Ensure the self-healing and long-lasting lubrication film of porous oil-bearing surfaces.
Practical implications
The effect of pore structure on the flow behavior of lubricating fluid has always been concerned. But the mechanism by which different orifice shape affect the pinning behavior of oil droplets is not yet clear, which is crucial for understanding the self-healing mechanism of oil films on porous surfaces. It is meaningful to analyze the mechanism of oil exudation and spreading on the porous surface of oil in the special orifice, to optimize the design of the orifice structure.
Originality/value
Orifice shape has influence on internal flow field parameters. There is no report on the influence of orifice shape on the film formation process of oil seepage and diffusion from pores. The effects of different orifice shapes and orifice structure parameters on the characteristics of oil droplet pinning and diffusion were studied.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2024-0118/
Details
Keywords
Guotao Zhang, Baohong Tong, Shubao Yang, Liping Shi and Yanguo Yin
The purpose of this paper was to study the hydrodynamic lubrication of rough bilayer porous bearing to reveal the effect of percolation.
Abstract
Purpose
The purpose of this paper was to study the hydrodynamic lubrication of rough bilayer porous bearing to reveal the effect of percolation.
Design/methodology/approach
The seepage lubrication model of the circular bilayer porous bearing was established in polar coordinates. The digital filtering technique and Darcy’s law were used to simulate the rough surface and the percolation characteristic of the oil bearing, respectively. The influence of the structural parameters on the lubrication performance was analyzed.
Findings
Compared with the ordinary monolayer oil bearing with high porosity, the bilayer bearing can reduce the whole porosity, prevent oil infiltrating into the porous medium and have better lubrication performance. The lubrication performance of bilayer oil bearing is better than that of the single-layer oil bearing which has a higher porosity. With increasing root-mean-square roughness or decreasing surface porosity, the lubrication performance of the bilayer bearing improves. The lower the porosity of the surface layer, the better the lubrication performance.
Originality/value
This research provides a theoretical basis for clarifying the lubrication mechanism and influence the mechanism of the bilayer oil bearing.
Details
Keywords
Cong Liu, Baohong Tong, Guotao Zhang, Wei Wang, Kun Liu and Peimin Xu
This paper aims to investigate the influence of oil–air lubrication flow behavior on point contact sliding wear characteristics.
Abstract
Purpose
This paper aims to investigate the influence of oil–air lubrication flow behavior on point contact sliding wear characteristics.
Design/methodology/approach
Oil–air lubrication equations between point contact counterparts were established on the basis of volume of fluid model. The effects of oil supply and injection azimuth on oil-phase volume fraction and its pressure distribution were simulated with commercial software Fluent. Characteristics of point contact sliding wear were then tested with an MFT-3000 friction tester under oil–air lubrication condition. The influence of flow behavior on wear characteristic was investigated combined with numerical and experimental results. The wear mechanism was revealed using SEM, EDS and ferrography.
Findings
When air supply speed is constant, the oil-phase volume fraction increases with the increase in oil supply, which helps form continuous oil film and decrease the sliding wear evidently. The injection angle and distance considerably influence the oil–air flow behavior. When injecting at a certain distance and angle, the oil-phase volume fraction reaches its maximum, and the abrasion loss is minimal. Under the test conditions in this study, abrasive particles are mainly debris and a few spiral cuttings. The wear mechanism is abrasive wear.
Originality/value
The influence of the behavior of oil–air lubrication flow on the characteristic of point contact sliding wear is analyzed. This work provides guidance for the application of oil–air lubrication technology in point contact friction pairs.
Details
Keywords
Cong Liu, Yanguo Yin, Baohong Tong and Guotao Zhang
This study aims to investigate the effect of MoS2 powder on tribological properties of sliding interfaces.
Abstract
Purpose
This study aims to investigate the effect of MoS2 powder on tribological properties of sliding interfaces.
Design/methodology/approach
Loose MoS2 powder was introduced in the gap of point-contact friction pairs, and sliding friction test was conducted using a testing machine. Friction noise, wear mark appearance, microstructure and wear debris were characterized with a noise tester, white-light interferometer, scanning electron microscope and ferrograph, respectively. Numerical simulation was also performed to analyze the influence of MoS2 powder on tribological properties of the sliding interface.
Findings
MoS2 powder remarkably improved the lubrication performance of the sliding interface, whose friction coefficient and wear rate were reduced by one-fifth of the interface values without powder. The addition of MoS2 powder also reduced stress, plastic deformation and friction temperature in the wear mark. The sliding interface with MoS2 powder demonstrated lower friction noise and roughness compared with the interface without powder lubrication. The adherence of MoS2 powder onto the friction interface formed a friction film, which induced the wear mechanism of the sliding interface to change from serious cutting and adhesive wear to delamination and slight cutting wear under the action of normal and shear forces.
Originality/value
Tribological characteristics of the interface with MoS2 powder lubrication were clarified. This work provides a theoretical basis for solid-powder lubrication and reference for its application in engineering.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2020-0150/
Details