Search results
1 – 3 of 3Xiuqi Wang, Fenglian Sun, Bangyao Han, Yilun Cao, Jinyang Du, Long Shao and Guohuai Liu
The purpose of this paper is to investigate the wetting behaviors of Sn-5Sb-CuNiAg solders on copper substrates in different soldering processes and the effects of alloying…
Abstract
Purpose
The purpose of this paper is to investigate the wetting behaviors of Sn-5Sb-CuNiAg solders on copper substrates in different soldering processes and the effects of alloying elements on the wettability.
Design/methodology/approach
Sn-5Sb-CuNiAg solder balls (750 µm in diameter) were spread and wetted on 40 × 40 × 1 mm copper plates, in different fluxes, soldering temperatures and time. The contact angles were obtained by a home-made measuring instrument. The samples were polished and deep etched before analyzed by scanning electron microscopy. Energy dispersive X-ray spectroscopy was used to identify the composition of the joints.
Findings
The effects of different soldering processes and alloying elements on the wetting behaviors of Sn-5Sb-CuNiAg solders on copper substrates were calculated and expounded. The rosin-based flux could effectively remove oxidation layers and improve the wettability of Sn-5Sb-CuNiAg solders. Then with the increase of soldering temperature and time, the contact angles decreased gradually. The soldering processes suited for Sn-5Sb-CuNiAg solders were RMA218, 280°C and 30 s. Considered the effects of alloying elements, the wettability of Sn-5Sb-0.5Cu-0.1Ni-0.5Ag was relatively favorable on copper substrates. Besides, Ni could accumulate at the solder/Cu interface and form a jagged (Cu,Ni)6Sn5 IMC.
Originality/value
This work was carried out with our handmade experiment equipment and the production of the quinary lead-free solder alloy used in wetting tests belongs to us. The investigated Sn-5Sb-CuNiAg alloys exhibited higher melting point and preferable wettability, that was one of the candidates for high-temperature lead-free solders to replace high-Pb solders, and applied extremely to high temperature and frequency working environments of the third-generation semiconductors components, with a greater potential research and development value.
Details
Keywords
Bangyao Han, Fenglian Sun, Chi Zhang and Xinlei Wang
This paper aims to investigate the effect of the Cu, Ni and Ag addition in Sn5Sb-based alloy on the mechanical properties and its mechanism.
Abstract
Purpose
This paper aims to investigate the effect of the Cu, Ni and Ag addition in Sn5Sb-based alloy on the mechanical properties and its mechanism.
Design/methodology/approach
The micro-indentation, creeping test of the Cu/Sn5Sb–0.5Cu–0.1Ni–0.5Ag/Cu and Cu/Sn–5Sb/Cu were conducted, and its microstructure was analysed. The scanning electron microscope and the metallographic microscope characterized the microstructure of the Sn5Sb–0.5Cu–0.1Ni–0.5Ag/Cu and Sn–5Sb/Cu joints.
Findings
The microstructure of Cu/Sn5Sb–0.5Cu–0.1Ni–0.5Ag/Cu is distributed with the fine (Cu,Ni)6Sn5 and Ag3Sn intermetallic compounds (IMCs), whereas the Cu6Sn5 and Sn3Sb2 in Cu/Sn–5Sb/Cu is larger and far more less. This investigation reveals that the addition of the Cu, Ni and Ag elements reinforced mechanical properties and provided a technical basis for the development of Sn–Sb alloy with good mechanical properties.
Originality/value
This paper reveals that the hardness and the modulus of the bulk solder Cu/Sn–5Sb/Cu solder joints were improved with the addition of Cu, Ni and Ag trace elements. Meanwhile, the creep resistance and plasticity were also improved. This study has a great value for exploring high-performance Sn–Sb based solder alloy and has proved an example.
Details
Keywords
Bangyao Han, Fenglian Sun, Tianhui Li and Yang Liu
The purpose of this paper is to investigate the morphology evolution and the composition transformation of Au-Sn intermetallic compounds (IMCs) of the new…
Abstract
Purpose
The purpose of this paper is to investigate the morphology evolution and the composition transformation of Au-Sn intermetallic compounds (IMCs) of the new Au/Sn-5Sb-1Cu-0.1Ni-0.1Ag/(Au)Ni solder joint during the high temperature aging.
Design/methodology/approach
Sn-5Sb-1Cu-0.1Ni-0.1Ag solder balls (500 µm in diameter), heat sink with structure of 7.4 µm Au layer on 5 µm Ni-plated Cu alloy and Si chip with 5.16 µm plated Au were used to fabricate micro-solder joints. The joints were performed in a furnace at 150°C for 150, 250 and 350 h aging. The samples were polished and deep etched before analyzed by metallographic microscope and scanning electron microscopy, respectively. Energy dispersive x-ray spectroscopy was used to identify the composition of the IMCs.
Findings
ß-(Au,Ni,Cu)10Sn phase is formed during the soldering process. The IMCs evolution has two periods during the aging. The first is the ξ-(Au,Ni,Cu)5Sn, ξ-(Au,Cu)5Sn and δ-AuSn were formed and grew to form a full-compound joint after about 150 h aging. The second is the conversion of the full-compound joint. The IMCs converted to ξ′ phase when the aging time extends to 250 h, and transformed to ε-(Au,Ni,Cu)Sn2 and η-(Au,Ni,Cu)Sn4 after 350 h aging. The thicker gold layer and thinner solder joint can promote the growth of the IMCs. ß-(Au,Ni,Cu)10Sn emerged in Au/SnSb-CuNiAg/(Au)Ni in this research, which is not usually found.
Originality/value
The results in this study have a significant meaning for the application of the new Sn-5Sb-1Cu-0.1Ni-0.1Ag in harsh conditions.
Details