Search results

1 – 10 of over 37000
Article
Publication date: 2 February 2024

Deepika Parmar, S.V.S.S.N.V.G. Krishna Murthy, B.V. Rathish Kumar and Sumant Kumar

This study aims to analyze the impact of fractional derivatives on heat transfer and entropy generation during transient free convection inside various complex porous enclosures…

Abstract

Purpose

This study aims to analyze the impact of fractional derivatives on heat transfer and entropy generation during transient free convection inside various complex porous enclosures, such as triangle, L-shape and square-containing wavy surfaces. These porous enclosures are saturated with Cu-water nanofluid and subjected to the influence of a uniform magnetic field.

Design/methodology/approach

In the present study, Darcy’s model is used for the momentum transport equation in the porous matrix. Additionally, the Caputo time fractional derivative is introduced in the energy equation to assess the heat transfer phenomenon. Furthermore, the total entropy generation has been computed by combining the entropy generation due to fluid friction (Sff), heat transfer (Sht) and magnetic field (Smf). The complete mathematical model is further simulated using the penalty finite element method, and the Caputo time derivative term is approximated using the L1 scheme. The study is conducted for various ranges of the Rayleigh number (102Ra104), Hartmann number (0Ha20) and fractional order parameter (0<α<1) with respect to time.

Findings

It has been observed that the fractional order parameter α governs the characteristics of entropy generation and heat transfer within the selected range of parameters. The Bejan number associated with heat transfer (Beht), fluid friction (Beff) and magnetic field (Bemf) further demonstrate the dominance of flow irreversibilities. It becomes evident that the initial evolution state of streamlines, isotherms and local entropy varies according to the choice of α. Additionally, increasing Ra values from 102 to 104 shows that the heat transfer rate increases by 123.8% for a square wavy enclosure, 7.4% for a triangle enclosure and 69.6% for an L-shape enclosure. Moreover, an increase in the value of Ha leads to a reduction in heat transfer rates and entropy generation. In this case, Bemf1 shows the dominance of the magnetic field irreversibility in the total entropy generation.

Practical implications

Recently, fractional-order models have been widely used to express numerous physical phenomena, such as anomalous diffusion and dispersion in complex viscoelastic porous media. These models offer a more accurate representation of physical reality that classical models fail to capture; this is why they find a broad range of applications in science and engineering.

Originality/value

The fractional derivative model is used to illustrate the flow pattern, heat transfer and entropy-generating characteristics under the influence of a magnetic field. Furthermore, to the best of the author’s knowledge, a fractional-derivative-based mathematical model for the entropy generation phenomenon in complex porous enclosures has not been previously developed or studied.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 January 2024

Sumant Kumar, B.V. Rathish Kumar, S.V.S.S.N.V.G. Krishna Murthy and Deepika Parmar

Thermo-magnetic convective flow analysis under the impact of thermal radiation for heat and entropy generation phenomena is an active research field for understanding the…

Abstract

Purpose

Thermo-magnetic convective flow analysis under the impact of thermal radiation for heat and entropy generation phenomena is an active research field for understanding the efficiency of thermodynamic systems in various engineering sectors. This study aims to examine the characteristics of convective heat transport and entropy generation within an inverted T-shaped porous enclosure saturated with a hybrid nanofluid under the influence of thermal radiation and magnetic field.

Design/methodology/approach

The mathematical model incorporates the Darcy-Forchheimer-Brinkmann model and considers thermal radiation in the energy balance equation. The complete mathematical model has been numerically simulated through the penalty finite element approach at varying values of flow parameters, such as Rayleigh number (Ra), Hartmann number (Ha), Darcy number (Da), radiation parameter (Rd) and porosity value (e). Furthermore, the graphical results for energy variation have been monitored through the energy-flux vector, whereas the entropy generation along with its individual components, namely, entropy generation due to heat transfer, fluid friction and magnetic field, are also presented. Furthermore, the results of the Bejan number for each component are also discussed in detail. Additionally, the concept of ecological coefficient of performance (ECOP) has also been included to analyse the thermal efficiency of the model.

Findings

The graphical analysis of results indicates that higher values of Ra, Da, e and Rd enhance the convective heat transport and entropy generation phenomena more rapidly. However, increasing Ha values have a detrimental effect due to the increasing impact of magnetic forces. Furthermore, the ECOP result suggests that the rising value of Da, e and Rd at smaller Ra show a maximum thermal efficiency of the mathematical model, which further declines as the Ra increases. Conversely, the thermal efficiency of the model improves with increasing Ha value, showing an opposite trend in ECOP.

Practical implications

Such complex porous enclosures have practical applications in engineering and science, including areas like solar power collectors, heat exchangers and electronic equipment. Furthermore, the present study of entropy generation would play a vital role in optimizing system performance, improving energy efficiency and promoting sustainable engineering practices during the natural convection process.

Originality/value

To the best of the authors’ knowledge, this study is the first ever attempted detailed investigation of heat transfer and entropy generation phenomena flow parameter ranges in an inverted T-shaped porous enclosure under a uniform magnetic field and thermal radiation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Book part
Publication date: 13 July 2011

V. Kumar

Over the past 25 years as a marketing academic, I have been fortunate to have collaborated with various researchers and firms and have contributed to the advancement of the…

Abstract

Over the past 25 years as a marketing academic, I have been fortunate to have collaborated with various researchers and firms and have contributed to the advancement of the marketing field. This is a review article that tracks my progress through these years that has led me to explore different areas of marketing, thereby shaping me as a researcher and an academic. As I see now, all of my research work can be viewed from a decision-making point of view – decisions that marketers can make either at the market, brand/firm/store, or the customer level. These decisions have in turn been transformed into strategies or tactics leading up to successful implementations and improved bottom-line results. The development of strategies/tactics and successful implementations can be seen in nearly 10 areas of research that I have involved myself in. This article also highlights how my research studies have contributed and advanced the creation of knowledge in each of these research areas.

Details

Review of Marketing Research: Special Issue – Marketing Legends
Type: Book
ISBN: 978-0-85724-897-8

Book part
Publication date: 29 August 2022

Aaditeshwar Seth

Abstract

Details

Technology and (Dis)Empowerment: A Call to Technologists
Type: Book
ISBN: 978-1-80382-393-5

Article
Publication date: 26 June 2024

Amit Sharma and Pratima Rai

Singular perturbation turning point problems (SP-TPPs) involving parabolic convection–diffusion Partial Differential Equations (PDEs) with large spatial delay are studied in this…

Abstract

Purpose

Singular perturbation turning point problems (SP-TPPs) involving parabolic convection–diffusion Partial Differential Equations (PDEs) with large spatial delay are studied in this paper. These type of equations are important in various fields of mathematics and sciences such as computational neuroscience and require specialized techniques for their numerical analysis.

Design/methodology/approach

We design a numerical method comprising a hybrid finite difference scheme on a layer-adapted mesh for the spatial discretization and an implicit-Euler scheme on a uniform mesh in the temporal variable. A combination of the central difference scheme and the simple upwind scheme is used as the hybrid scheme.

Findings

Consistency, stability and convergence are investigated for the proposed scheme. It is established that the present approach has parameter-uniform convergence of OΔτ+K2(lnK)2, where Δτ and K denote the step size in the time direction and number of mesh-intervals in the space direction.

Originality/value

Parabolic SP-TPPs exhibiting twin boundary layers with large spatial delay have not been studied earlier in the literature. The presence of delay portrays an interior layer in the considered problem’s solution in addition to twin boundary layers. Numerical illustrations are provided to demonstrate the theoretical estimates.

Details

Engineering Computations, vol. 41 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 June 2024

Syed Modassir Hussain, Rohit Sharma, Manoj Kumar Mishra and Jitendra Kumar Singh

Nanosized honeycomb-configured materials are used in modern technology, thermal science and chemical engineering due to their high ultra thermic relevance. This study aims to…

Abstract

Purpose

Nanosized honeycomb-configured materials are used in modern technology, thermal science and chemical engineering due to their high ultra thermic relevance. This study aims to scrutinize the heat transmission features of magnetohydrodynamic (MHD) honeycomb-structured graphene nanofluid flow within two squeezed parallel plates under Joule dissipation and solar thermal radiation impacts.

Design/methodology/approach

Mass, energy and momentum preservation laws are assumed to find the mathematical model. A set of unified ordinary differential equations with nonlinear behavior is used to express the correlated partial differential equations of the established models, adopting a reasonable similarity adjustment. An approximate convergent numerical solution to these equations is evaluated by the shooting scheme with the Runge–Kutta–Fehlberg (RKF45) technique.

Findings

The impression of pertinent evolving parameters on the temperature, fluid velocity, entropy generation, skin friction coefficients and the heat transference rate is explored. Further, the significance of the irreversibility nature of heat transfer due to evolving flow parameters are evaluated. It is noted that the heat transference rate performance is improved due to the imposition of the allied magnetic field, Joule dissipation, heat absorption, squeezing and thermal buoyancy parameters. The entropy generation upsurges due to rising magnetic field strength while its intensification is declined by enhancing the porosity parameter.

Originality/value

The uniqueness of this research work is the numerical evaluation of MHD honeycomb-structured graphene nanofluid flow within two squeezed parallel plates under Joule dissipation and solar thermal radiation impacts. Furthermore, regression models are devised to forecast the correlation between the rate of thermal heat transmission and persistent flow parameters.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Abstract

Details

The Emerald Handbook of Multi-Stakeholder Communication
Type: Book
ISBN: 978-1-80071-898-2

Article
Publication date: 8 February 2021

Ouadie Koubaiti, Said EL Fakkoussi, Jaouad El-Mekkaoui, Hassan Moustachir, Ahmed Elkhalfi and Catalin I. Pruncu

This paper aims to propose a new boundary condition and a web-spline basis of finite element space approximation to remedy the problems of constraints due to homogeneous and…

Abstract

Purpose

This paper aims to propose a new boundary condition and a web-spline basis of finite element space approximation to remedy the problems of constraints due to homogeneous and non-homogeneous; Dirichlet boundary conditions. This paper considered the two-dimensional linear elasticity equation of Navier–Lamé with the condition CAB. The latter allows to have a total insertion of the essential boundary condition in the linear system obtained; without using a numerical method as Lagrange multiplier. This study have developed mixed finite element; method using the B-splines Web-spline space. These provide an exact implementation of the homogeneous; Dirichlet boundary conditions, which removes the constraints caused by the standard; conditions. This paper showed the existence and the uniqueness of the weak solution, as well as the convergence of the numerical solution for the quadratic case are proved. The weighted extended B-spline; approach have become a much more workmanlike solution.

Design/methodology/approach

In this paper, this study used the implementation of weighted finite element methods to solve the Navier–Lamé system with a new boundary condition CA, B (Koubaiti et al., 2020), that generalises the well-known basis, especially the Dirichlet and the Neumann conditions. The novel proposed boundary condition permits to use a single Matlab code, which summarises all kind of boundary conditions encountered in the system. By using this model is possible to save time and programming recourses while reap several programs in a single directory.

Findings

The results have shown that the Web-spline-based quadratic-linear finite elements satisfy the inf–sup condition, which is necessary for existence and uniqueness of the solution. It was demonstrated by the existence of the discrete solution. A full convergence was established using the numerical solution for the quadratic case. Due to limited regularity of the Navier–Lamé problem, it will not change by increasing the degree of the Web-spline. The computed relative errors and their rates indicate that they are of order 1/H. Thus, it was provided their theoretical validity for the numerical solution stability. The advantage of this problem that uses the CA, B boundary condition is associated to reduce Matlab programming complexity.

Originality/value

The mixed finite element method is a robust technique to solve difficult challenges from engineering and physical sciences using the partial differential equations. Some of the important applications include structural mechanics, fluid flow, thermodynamics and electromagnetic fields (Zienkiewicz and Taylor, 2000) that are mainly based on the approximation of Lagrange. However, this type of approximation has experienced a great restriction in the level of domain modelling, especially in the case of complicated boundaries such as that in the form of curvilinear graphs. Recently, the research community tried to develop a new way of approximation based on the so-called B-spline that seems to have superior results in solving the engineering problems.

Details

Engineering Computations, vol. 38 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 July 2021

Ramneek Sidhu and Mayank Kumar Rai

This paper aims to present the edge scattering dominant circuit modeling. The effect of crosstalk on gate oxide reliability (GOR), along with the mitigation using shielding…

Abstract

Purpose

This paper aims to present the edge scattering dominant circuit modeling. The effect of crosstalk on gate oxide reliability (GOR), along with the mitigation using shielding technique is further studied.

Design/methodology/approach

An equivalent distributed Resistance Inductance Capacitance circuit of capacitively coupled interconnects of multilayer graphene nanoribbon (MLGNR) has been considered for T Simulation Program with Integrated Circuit Emphasis (TSPICE) simulations under functional and dynamic switching conditions. Complementary metal oxide semiconductor driver transistors are modeled by high performance predictive technology model that drive the distributed segment with a capacitive load of 0.001 fF, VDD and clock frequency as 0.7 V and 0.2 GHz, respectively, at 14 nm technology node.

Findings

The results reveal that the crosstalk induced delay and noise area are dominated by the overall mean free path (MFP) (i.e. including the effect of edge roughness induced scattering), in contrary to, acoustic and optical scattering limited MFP with the temperature, width and length variations. Further, GOR, estimated in terms of average failure rate (AFR), shows that the shielding technique is an effective method to minimize the relative GOR failure rate by, 0.93e-7 and 0.7e-7, in comparison to the non-shielded case with variations in interconnect’s length and width, respectively.

Originality/value

Considering realistic circuit modeling for MLGNR interconnects by incorporating the edge roughness induced scattering mechanism, the outcomes exhibit more penalty in terms of crosstalk induced noise area and delay. The shielding technique is found to be an effective mitigating technique for minimizing AFR in coupled MLGNR interconnects.

Details

Circuit World, vol. 48 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 10 October 2016

V. Raja Sreedharan and R. Raju

The purpose of this paper is to review Lean Six Sigma (LSS) literature and report different definitions, demographics, methodologies and industries.

5032

Abstract

Purpose

The purpose of this paper is to review Lean Six Sigma (LSS) literature and report different definitions, demographics, methodologies and industries.

Design/methodology/approach

This paper highlights various definitions by different researchers and practitioners. A total of 235 research papers has been reviewed for the LSS theme, research methodology adopted, type of industry, author profile, country of research and year of publication.

Findings

From the review, four significant LSS classifications were identified that deal with the spread of LSS in different industries followed by observation for classification.

Practical implications

LSS is a strategy for success, but it did not examine its presence in various Industries. From this paper, readers can understand the quantum of its spread before implementing LSS. For academicians, it will be a comprehensive list of papers for research.

Originality/value

This paper reviews 235 research papers for their year, author profile, research methodology and type of industry. Various characteristics of LSS definitions and their theme are also reviewed.

Details

International Journal of Lean Six Sigma, vol. 7 no. 4
Type: Research Article
ISSN: 2040-4166

Keywords

1 – 10 of over 37000