Search results
1 – 10 of over 1000Yograj Singh Duksh, Brajesh Kumar Kaushik, Sankar Sarkar and Raghuvir Singh
The purpose of this paper is to explore and evaluate the performance comparison of carbon nanotubes (CNT) and nickel silicide (NiSi) nanowires interconnects as prospective…
Abstract
Purpose
The purpose of this paper is to explore and evaluate the performance comparison of carbon nanotubes (CNT) and nickel silicide (NiSi) nanowires interconnects as prospective alternatives to copper wire interconnects.
Design/methodology/approach
The increasing resistivity of the copper wire with scaling and rising demands on current density drives the need for identifying new wiring solutions. This paper explores the various alternatives to copper. The metallic bundle CNTs and NiSi nanowires are promising candidates that can potentially address the challenges faced by copper. This paper analyzes various electrical models of carbon nanotube and recently introduced novel interconnect solution using NiSi nanowires.
Findings
The theoretical studies proves CNTs and NiSi nanowires to be better alternatives against copper on the ground of performance parameters, such as effective current density, delay and power consumption. NiSi nanowire provides highest propagation speed for short wire length, and copper is the best for intermediate wire length, while bundle CNTs is faster for long wire length. NiSi nanowire has lowest power consumption than copper and CNTs.
Originality/value
This paper investigates, assess and compares the performance of carbon nanotubes (CNT) and NiSi nanowires interconnects as prospective alternatives to copper wire interconnects in future VLSI chips.
Details
Keywords
Piyush Tankwal, Vikas Nehra, Sanjay Prajapati and Brajesh Kumar Kaushik
The purpose of this paper is to analyze and compare the characteristics of hybrid conventional complementary metal oxide semiconductor/magnetic tunnel junction (CMOS/MTJ) logic…
Abstract
Purpose
The purpose of this paper is to analyze and compare the characteristics of hybrid conventional complementary metal oxide semiconductor/magnetic tunnel junction (CMOS/MTJ) logic gates based on spin transfer torque (STT) and differential spin Hall effect (DSHE) magnetic random access memory (MRAM).
Design/methodology/approach
Spintronics technology can be used as an alternative to CMOS technology as it is having comparatively low power dissipation, non-volatility, high density and high endurance. MTJ is the basic spin based device that stores data in form of electron spin instead of charge. Two mechanisms, namely, STT and SHE, are used to switch the magnetization of MTJ.
Findings
It is observed that the power consumption in DSHE based logic gates is 95.6% less than the STT based gates. DSHE-based write circuit consumes only 5.28 fJ energy per bit.
Originality/value
This paper describes how the DSHE-MRAM is more effective for implementing logic circuits in comparison to STT-MRAM.
Details
Keywords
D.K. Sharma, B.K. Kaushik and R.K. Sharma
The purpose of this paper is to explore the functioning of very‐large‐scale integration (VLSI) interconnects and modeling of interconnects and evaluate different approaches of…
Abstract
Purpose
The purpose of this paper is to explore the functioning of very‐large‐scale integration (VLSI) interconnects and modeling of interconnects and evaluate different approaches of testing interconnects.
Design/methodology/approach
In the past, on‐chip interconnect wires were not considered in circuit analysis except in high precision analysis. Wiring‐up of on‐chip devices takes place through various conductors produced during fabrication process. The shrinking size of metal‐oxide semiconductor field effect transistor devices is largely responsible for growth of VLSI circuits. With deep sub‐micron (DSM) technology, the interconnect geometry is scaled down for high wiring density. The complex geometry of interconnects and high operational frequency introduce wire parasitics and inter‐wire parasitics. These parasitics causes delay, power dissipation, and crosstalk that may affect the signal integrity in VLSI system. Accurate analysis, sophisticated design, and effective test methods are the requirement to ensure the proper functionality and reliability of VLSI circuits. The testing of interconnect is becoming important and a challenge in the current technology.
Findings
The effects of interconnect on signal integrity, power dissipation, and delay emerges significantly in DSM technology. For proper performance of the circuit, testing of interconnect is important and emerging challenge in the nanotechnology era. Although some work has been done for testing of interconnect, however, it is still an open area to test the parasitics effects of VLSI/ultra‐large‐scale integration interconnects. Efforts are required to analyze and to develop test methods for crosstalk, delay and power dissipation in current technology with solutions to minimize this effect.
Originality/value
This paper reviews the functioning of VLSI interconnects from micrometer to nanometer technology. The development of various interconnect models from simple short circuit to latest resistance inductance capacitance transmission line model are discussed. Furthermore, various methodologies such as built‐in self test and other techniques for testing interconnect for crosstalk and delay are discussed.
Details
Keywords
This paper aims to reduce the worst-case crosstalk effects for resistance, inductance and capacitance (RLC) interconnects using the bus encoding technique. In current nanoscale…
Abstract
Purpose
This paper aims to reduce the worst-case crosstalk effects for resistance, inductance and capacitance (RLC) interconnects using the bus encoding technique. In current nanoscale technology, power dissipation, propagation delay and crosstalk performance of interconnects determine the overall performance of a chip. Signal integrity issues due to crosstalk in the form of voltage glitches, overshoots, undershoots, undesirable noise, propagation speed ups and downs, etc. are some of the major deterrents for high-performance RLC modelled (VLSI) interconnects. This research paper primarily proposes two novel encoding methods (I and II) for RLC modelled interconnects to reduce the effect of crosstalk, simultaneous switching noise (SSN) and power consumption.
Design/methodology/approach
The proposed methods are based on the bus encoding method that is effective and well-suited for the reduction of the crosstalk noise. This method encodes or transforms incoming data in a manner that encoded data contain minimum or no crosstalk effects. The proposed encoding method uses the bus invert (BI) method. The proposed encoding methods are able to avoid the worst-case crosstalks while consuming lesser power during transmission in VLSI interconnects.
Findings
It is observed that the proposed encoders reduced/eliminated the worst-case crosstalk by reducing SSN. The encoding method I also reduces Type 0 crosstalk by 100 per cent, while Type 1 crosstalk is reduced by 36.4 per cent and Type 2 is reduced by 16.8 per cent. The average simultaneous switching is reduced by 51.1 per cent. Similarly, encoding method II reduces switching activity by 10.3 per cent, whereas the coupling activity is reduced by 35.4 per cent. Furthermore, encoding method II also reduced Type 0, Type 1 and Type 2 crosstalk by 100, 36.9 and 27.1 per cent, respectively. Hence, the proposed encoding methods reduced the worst-case crosstalk completely.
Research limitations/implications
In VLSI technology, the reduction in feature size and the increase in operating frequency are quite rapid. This leads to higher propagation delay, crosstalk and power dissipation through the interconnects. Most of the previously proposed encoders/decoders have turned out to be unsuitable for RLC modelled interconnects. Hence, the proposed encoder would be extremely useful for crosstalk reduction in newer operating conditions.
Practical implications
The encoding method I identifies the harsh crosstalks, that is Type 0 and Type 1, in the inverted and non-inverted forms of incoming data with respect to the previous data. The data having minimum crosstalk in the inverted and non-inverted forms are only sent through the transmission line. The encoding method I also removes the worst-case crosstalk and simultaneously reduces other mild crosstalks. The removal of worst-case crosstalk improves the overall performance of the interconnect. The encoding method II identifies Type 2 crosstalk along with Type 0 and Type 1 similar to encoding method I. Furthermore, the encoding method II exhibits an improvement over method I in terms of reduction in crosstalk and power dissipation.
Originality/value
This paper proposes a novel encoding method to reduce worst-case crosstalk effects that reduces SSN. The proposed encoding methods achieve their purpose of crosstalk reduction for several technology nodes.
Details
Keywords
Brajesh Kumar Kaushik, Saurabh Goel and Gaurav Rauthan
To review and explore optical fiber and carbon nanotube (CNT) as prospective alternatives to copper in VLSI interconnections.
Abstract
Purpose
To review and explore optical fiber and carbon nanotube (CNT) as prospective alternatives to copper in VLSI interconnections.
Design/methodology/approach
As the technology moves to deep submicron level, the interconnect width also scales down. Increasing resistivity of copper with scaling and rising demands on current density drives the need for identifying new wiring solutions. This paper explores various alternatives to copper. Metallic CNTs, optical interconnects are promising candidates that can potentially address the challenges faced by copper.
Findings
Although, the theoretical aspects proves CNTs and optical interconnect to be better alternative against copper on the ground of performance parameters such as power dissipation, switching delay, crosstalk. But copper would last for coming decades on integration basis.
Originality/value
This paper reviews the state‐of‐the‐art in CNT interconnect and optical interconnect research; and discusses both the advantages and challenges of these emerging technologies.
Details
Keywords
Ramneek Sidhu and Mayank Kumar Rai
This paper aims to present the edge scattering dominant circuit modeling. The effect of crosstalk on gate oxide reliability (GOR), along with the mitigation using shielding…
Abstract
Purpose
This paper aims to present the edge scattering dominant circuit modeling. The effect of crosstalk on gate oxide reliability (GOR), along with the mitigation using shielding technique is further studied.
Design/methodology/approach
An equivalent distributed Resistance Inductance Capacitance circuit of capacitively coupled interconnects of multilayer graphene nanoribbon (MLGNR) has been considered for T Simulation Program with Integrated Circuit Emphasis (TSPICE) simulations under functional and dynamic switching conditions. Complementary metal oxide semiconductor driver transistors are modeled by high performance predictive technology model that drive the distributed segment with a capacitive load of 0.001 fF, VDD and clock frequency as 0.7 V and 0.2 GHz, respectively, at 14 nm technology node.
Findings
The results reveal that the crosstalk induced delay and noise area are dominated by the overall mean free path (MFP) (i.e. including the effect of edge roughness induced scattering), in contrary to, acoustic and optical scattering limited MFP with the temperature, width and length variations. Further, GOR, estimated in terms of average failure rate (AFR), shows that the shielding technique is an effective method to minimize the relative GOR failure rate by, 0.93e-7 and 0.7e-7, in comparison to the non-shielded case with variations in interconnect’s length and width, respectively.
Originality/value
Considering realistic circuit modeling for MLGNR interconnects by incorporating the edge roughness induced scattering mechanism, the outcomes exhibit more penalty in terms of crosstalk induced noise area and delay. The shielding technique is found to be an effective mitigating technique for minimizing AFR in coupled MLGNR interconnects.
Details
Keywords
B.K. Kaushik, S. Sarkar, R.P. Agarwal and R.C. Joshi
To analyze the effect of voltage scaling on crosstalk.
Abstract
Purpose
To analyze the effect of voltage scaling on crosstalk.
Design/methodology/approach
Voltage scaling has been often used for reducing power dissipation of CMOS driven interconnects. An undesired effect observed due to voltage scaling is increase in propagation delay. Thus, a trade off lies between power dissipation and propagation delay with voltage scaling. However, voltage scaling can result in overall reduction of power delay product. Therefore, their lies an optimized supply voltage where‐in power dissipation and propagation delay can be optimized. Many of the previous researches have discussed about power dissipation and propagation delay only with voltage scaling. This paper for first time shows the effect on crosstalk in voltage scaled interconnects. In this paper, we primarily study the noise for an input signal having transition time of 50 ps. The simulations are run for interconnect length of 2 and 4 mm. These parameters are varied for four different cases of stimulations to aggressor and victim lines viz. VA (input at aggressor node A) and VB (input at victim node B) switching in same direction; VA is switching and VB at static low; VA and VB are switching in opposite direction; VA is switching and VB at static high.
Findings
It is quite encouraging to observe that irrespective of interconnect length and technology node used, an optimized voltage scaling reduces normalized crosstalk level.
Originality/value
Voltage scaling can be effectively used for crosstalk reduction by the new era VLSI interconnect designers. This paper shows simulation results for crosstalk reduction in different nano‐sized CMOS driven RLC‐modeled interconnects.
Details
Keywords
Yograj Singh Duksh, Brajesh Kumar Kaushik, Sankar Sarkar and Raghuvir Singh
The purpose of this paper is to analyze the effect of driver size and number of shells on propagation delay and power for multi‐walled carbon nanotubes (MWCNT) interconnects at…
Abstract
Purpose
The purpose of this paper is to analyze the effect of driver size and number of shells on propagation delay and power for multi‐walled carbon nanotubes (MWCNT) interconnects at 22 nm technology node.
Design/methodology/approach
An equivalent circuit model of MWCNT is used for estimation and analysis of propagation delay and power. The delay and power through MWCNT and Cu interconnects are compared for various driver sizes and number of MWCNT shells.
Findings
The SPICE simulation results show that the MWCNT interconnect has lower propagation delay than Cu interconnects. The delay ratio of MWCNT to Cu decreases with increase in length for different driver size and number of MWCNT shells. However, the delay ratio increases with reduction in number of MWCNT shells. The ratio of average power consumption (MWCNT/Cu) also decreases with the variation in driver size and numbers of shells with respect to the length of interconnect. The theoretical study proves CNTs to be better alternatives against copper on the ground of performance parameters.
Research limitations/implications
Several challenges remain to be overcome in the areas of fabrication and process integration for CNTs. Lowering of metal nanotube contact resistance would be vital, especially for local interconnect and via applications. Moreover, rigorous characterization and modeling of electromagnetic interactions in CNT bundles; 3‐D (metal) to 1‐D (CNT) contact resistance; impact of defects on electrical and thermal properties; and high‐frequency effects are being seen as additional challenges.
Originality/value
This paper investigates, assesses and compares the performance of carbon nanotubes (CNT) based interconnects as prospective alternatives to copper wire interconnects in future VLSI chips. Multi walled CNTs assure for long/global interconnect applications.
Details
Keywords
Devendra Kumar Sharma, Brajesh Kumar Kaushik and R.K. Sharma
The purpose of this research paper is to analyze the combined effects of driver size and coupling parasitics on crosstalk noise and delay for static and dynamically switching…
Abstract
Purpose
The purpose of this research paper is to analyze the combined effects of driver size and coupling parasitics on crosstalk noise and delay for static and dynamically switching victim line. Furthermore, this paper shows the effect of inductance on delay and qualitatively optimizes its value to obtain minimum delay.
Design/methodology/approach
The interwire parasitics are the primary sources of crosstalk or coupled noise that may lead to critical delays/logic malfunctions. This paper is based on simulating a pair of distributed resistance inductance capacitance (RLC) interconnects coupled capacitively and inductively for measurements of crosstalk noise/delay. The combined effects of driver sizing and interwire parasitics on peak overshoot noise/delay are observed through simulation program with integrated circuit emphasis (SPICE) simulations for different switching patterns. Furthermore, the analysis of inductive effect on propagation delay as a function of coupling capacitance is carried out and the optimization of delay is worked out qualitatively. The simulations are carried out at 0.13 μm, 1.5 V technology node.
Findings
This paper observes the contradictory effects of coupling parasitics on wire propagation delay; however, the effect on peak noise is of a different kind. Further, this paper shows that the driver size exhibits opposite kind of behavior on propagation delay than peak over shoot noise. It is observed that the delay is affected in presence of inductance; thus, the optimization of delay is carried out.
Originality/value
The effects of driver sizing and interwire parasitics are analyzed through simulations. The optimum value of coupling capacitance for delay is found qualitatively. These findings are important for designing very large scale integration (VLSI) interconnects.
Details
Keywords
Shashank Rebelli and Bheema Rao Nistala
This paper aims to model the coupled on-chip Copper (Cu) interconnects by using the multiresolution time-domain (MRTD) method.
Abstract
Purpose
This paper aims to model the coupled on-chip Copper (Cu) interconnects by using the multiresolution time-domain (MRTD) method.
Design/methodology/approach
The proposed model is a wavelet-based numerical method for analyzing signal integrity and propagation delay of coupled on-chip interconnects. Moreover, the dependency of crosstalk noise and delay on coupling parasitics (L12, C12) are analyzed.
Findings
The proposed MRTD method captures the behaviour of propagation delay and peak crosstalk noise on victim line against coupling parasitics, which is in close agreement with that of H simulation program with integrated circuit emphasis (HSPICE). The average error for the proposed model is less than 1 per cent with respect to HSPICE for the estimation of peak crosstalk noise voltage.
Practical implications
Simulations are performed using HSPICE and compared with those performed using the proposed MRTD method for global interconnect length with 130-nm technology, where the computations of the proposed model are carried out using Matlab.
Originality/value
The MRTD method with its unique features is tailored for modelling interconnects. To build further credence to this and its profound existence in the latest state-of-art works, simulations of crosstalk noise and propagation delay, for coupled Cu interconnect lines, using MRTD and finite-difference time-domain (FDTD) are executed. The results illustrated the dominance of MRTD method over FDTD in terms of accuracy.
Details