Search results
1 – 10 of 198B. Mahanthesh, Amala S., Gireesha B.J. and I.L. Animasaun
The study of novel exponential heat source (EHS) phenomena across a flowing fluid with the suspension of nanoparticles over a rotating plate in the presence of Hall current and…
Abstract
Purpose
The study of novel exponential heat source (EHS) phenomena across a flowing fluid with the suspension of nanoparticles over a rotating plate in the presence of Hall current and chemical reaction has been an open question. Therefore, the purpose of this paper is to investigate the impact of EHS in the transport of nanofluid under the influence of strong magnetic dipole (Hall effect), chemical reaction and temperature-dependent heat source (THS) effects. The Khanafer-Vafai-Lightstone model is used for nanofluid and the thermophysical properties of nanofluid are calculated from mixture theory and phenomenological laws. The simulation of the flow is also carried out using the appropriate values of the empirical shape factor for five different particle shapes (i.e. sphere, hexahedron, tetrahedron, column and lamina).
Design/methodology/approach
Using Laplace transform technique, exact solutions are presented for the governing nonlinear equations. Graphical illustrations are pointed out to represent the impact of involved parameters in a comprehensive way. The numeric data of the density, thermal conductivity, dynamic viscosity, specific heat, Prandtl number and Nusselt number for 20 different nanofluids are presented.
Findings
It is established that the nanofluid enhances the heat transfer rate of the working fluids; the nanoparticles also cause an increase of viscous. The impact of EHS advances the heat transfer characteristics significantly than usual thermal-based heat source (THS).
Originality/value
The effectiveness of EHS phenomena in the dynamics of nanofluid over a rotating plate with Hall current, chemical reaction and THS effects is first time investigated.
Details
Keywords
Gireesha B.J., M. Archana, B. Mahanthesh and Prasannakumara B.C.
The purpose of this paper is to explore the effects of binary chemical reaction and activation energy on nano Casson liquid flow past a stretched plate with non-linear radiative…
Abstract
Purpose
The purpose of this paper is to explore the effects of binary chemical reaction and activation energy on nano Casson liquid flow past a stretched plate with non-linear radiative heat, and also, the effect of a novel exponential space-dependent heat source (ESHS) aspect along with thermal-dependent heat source (THS) effect in the analysis of heat transfer in nanofluid. Comparative analysis is carried out between the flows with linear radiative heat process and non-linear radiative heat process.
Design/methodology/approach
A similarity transformation technique is utilised to access the ODEs from the governed PDEs. The manipulation of subsequent non-linear equations is carried out by a well-known numerical approach called Runge–Kutta–Fehlberg scheme. Obtained solutions are briefly discussed with the help of graphical and tabular illustrations.
Findings
The effects of various physical parameters on temperature, nanoparticles volume fraction and velocity fields within the boundary layer are discussed for two different flow situations, namely, flow with linear radiative heat and flow with non-linear radiative heat. It is found that an irregular heat source/sink (ESHS and THS) and non-linear solar radiation play a vital role in the enhancement of the temperature distributions.
Originality/value
The problem is relatively original to study the effects of activation energy and binary chemical reaction along with a novel exponential space-based heat source on laminar boundary flow past a stretched plate in the presence of non-linear Rosseland radiative heat.
Details
Keywords
G. Sowmya, B.J. Gireesha and O.D. Makinde
The purpose of this paper is to study the thermal behaviour of a fully wet porous fin of longitudinal profile. The significance of radiative and convective heat transfer has been…
Abstract
Purpose
The purpose of this paper is to study the thermal behaviour of a fully wet porous fin of longitudinal profile. The significance of radiative and convective heat transfer has been scrutinised along with the simultaneous variation of surface emissivity, heat transfer coefficient and thermal conductivity with temperature. The emissivity of the surface and the thermal conductivity are considered as linear functions of the local temperature between fin and the ambient. Darcy’s model was considered to formulate the heat transfer equation. According to this, the porous fin permits the flow to penetrate through it and solid–fluid interaction occurs.
Design/methodology/approach
Runge–Kutta–Fehlberg fourth–fifth-order method has been used to solve the reduced non-dimensionalized ordinary differential equation involving highly nonlinear terms.
Findings
The impact of pertinent parameters, such as convective parameter, radiative parameter, conductivity parameter, emissivity parameter, wet porous parameter, etc., on the temperature profiles were elaborated mathematically with the plotted graphs. The heat transfer from the fin enhances with the rise in convective parameter.
Originality/value
The wet nature of the fin enhances heat transfer and in many practical applications the parameters, such as thermal conductivity, heat transfer coefficient as well as surface emissivity, vary with temperature. Hence, the main objective of the current study is to depict the significance of simultaneous variation in surface emissivity, heat transfer coefficient and thermal conductivity with respect to temperature under natural convection and radiation condition in a totally wetted longitudinal porous fin.
Details
Keywords
B. Mahanthesh, T. Brizlyn, SabirAli Shehzad and Gireesha B.J.
The nonlinear density thermal/solutal fluctuations in the buoyancy force term cannot be ignored when the temperature/concentration difference between the surface and fluid is…
Abstract
Purpose
The nonlinear density thermal/solutal fluctuations in the buoyancy force term cannot be ignored when the temperature/concentration difference between the surface and fluid is large. The purpose of this paper is to investigate the nonlinear density fluctuations across a flowing fluid with heat mass transfer effects on a non-axial rotating plate. Therefore, the impact of nonlinear convection in the flow of Casson fluid over an oscillating plate has been analytically investigated.
Design/methodology/approach
The governing equations are modeled with the help of conservation equations of velocity, energy and concentration under the transient-state situation. The dimensional governing equations are non-dimensionalized by utilizing non-dimensional variables. Later, the subsequent non-dimensional problem has been solved analytically using Laplace transform method.
Findings
The effects of thermal Grashof number, solute Grashof number, nonlinear convection parameters, Casson fluid parameter, unsteady parameter, Prandtl number as well as Schmidt number on hydrodynamic, thermal and solute characteristics have been quantified. The numeric data for skin friction coefficient, Nusselt number and Sherwood number are presented. It is established the nonlinear convection aspect has a significant influence on heat and mass transport characteristics.
Originality/value
The effect of nonlinear convection in the dynamics of Casson fluid past an oscillating plate which is rotating non-axially is investigated for the first time.
Details
Keywords
G. Sowmya, Gireesha B.J., Muhammad Ijaz Khan, Shaher Momani and Tasawar Hayat
The purpose of this study is to conduct a numerical computation to analyse the thermal attribute and heat transfer phenomenon of a fully wetted porous fin of a longitudinal…
Abstract
Purpose
The purpose of this study is to conduct a numerical computation to analyse the thermal attribute and heat transfer phenomenon of a fully wetted porous fin of a longitudinal profile. The fin considered is that of a functionally graded material (FGM). Based on the spatial dependency of thermal conductivity, three cases such as linear, quadratic and exponential FGMs are analysed.
Design/methodology/approach
The governing equations are nondimensionalised and solved by applying Runge-Kutta-Fehlberg fourth-fifth order technique.
Findings
The parametric investigation is executed to access the significance of the pertinent parameters on the thermal feature of the fin and heat transmit rate. The outcomes are portrayed in a graphical form.
Originality/value
No such study has yet been published in the literature.
Details
Keywords
B. Mahanthesh, B.J. Gireesha, M. Archana, Tasawar Hayat and Ahmed Alsaedi
The features of coated wire product are measured by the flow and heat transport occurring in the interior of dies. Therefore, an understanding of characteristics of polymers…
Abstract
Purpose
The features of coated wire product are measured by the flow and heat transport occurring in the interior of dies. Therefore, an understanding of characteristics of polymers momentum, heat mass transfer and wall shear stress is of great interest. Enhancement of heat transfer rate is fundamental need of wire coating process. Therefore, this study aims to investigate the effect of suspended nanoparticles in heat and mass transport phenomena of third-grade liquid in post-treatment of wire coating process. Buongiorno model for nanofluid is adopted. Two cases of temperature dependent viscosity are considered.
Design/methodology/approach
The governing equations are modelled with the help of steady-state conservation equations of mass, momentum, energy and nanoparticle concentration. Some appropriate dimensionless variables are introduced. Numerical solutions for the nonlinear problem are developed through Runge–Kutta–Fehlberg technique. The outcome of sundry variables for dimensionless flow, thermal and nanoparticle volume fraction fields are scrutinised through graphical illustrations.
Findings
The study’s numerical results disclose that the force on the total wire surface and shear stress at the surface in case of Reynolds Model dominate Vogel’s Model case. Impact of nanoparticles is constructive for force on the total wire surface and shear stress at the surface. The velocity of the coating material can be enhanced by the non-Newtonian property.
Practical implications
This study may provide useful information to improve the wire coating technology.
Originality/value
Effect of nanoparticles in wire coating analysis by using Brownian motion and thermophoresis slip mechanisms is investigated for the first time. Two different models for variable viscosity are used.
Details
Keywords
Shashikumar N.S., B.J. Gireesha, B. Mahanthesh, Prasannakumara B.C. and Ali J. Chamkha
Outstanding features such as superior electrical conductivity and thermal conductivity of alloy nanoparticles with working fluids make them ideal materials to be used as coolants…
Abstract
Purpose
Outstanding features such as superior electrical conductivity and thermal conductivity of alloy nanoparticles with working fluids make them ideal materials to be used as coolants in microelectromechanical systems (MEMSs). This paper aims to investigate the effects of different alloy nanoparticles such as AA7075 and Ti6Al4V on microchannel flow of magneto-nanoliquids with partial slip and convective boundary conditions. Flow features are explored with the effects of magnetism and nanoparticle shape. Heat transport of fluid includes radiative heat, internal heat source/sink, viscous and Joule heating phenomena.
Design/methodology/approach
Suitable dimensionless variables are used to reduce dimensional governing equations into dimensionless ordinary differential equations. The relevant dimensionless ordinary differential systems are computed numerically by using Runge–Kutta–Fehlberg-based shooting approach. Pertinent results of velocity, temperature, entropy number and Bejan number for assorted values of physical parameters are comprehensively discussed. Also, a closed-form solution is obtained for momentum equation for a particular case. Analytical results agree perfectly with numerical results.
Findings
It is established that the entropy production can be improved with radiative heat, Joule heating, convective heating and viscous dissipation aspects. The entropy production is higher in the case of Ti6Al4V-H2O nanofluid than AA7075-H2O. Further, the inequality Ns(ξ)Sphere > Ns(ξ)Hexahedran > Ns(ξ)Tetrahydran > Ns(ξ)Column > Ns(ξ)Lamina holds true.
Originality/value
Effects of aluminium and titanium alloy nanoparticles in microchannel flows by using viscous dissipation and Joule heating are investigated for the first time. Flow features are explored with the effects of magnetism and nanoparticle shape. The results for different alloy nanoparticles such as AA7075 and Ti6Al4V have been compared.
Details
Keywords
P.K. Pattnaik, S.R. Mishra, B. Mahanthesh, B.J. Gireesha and Mohammad Rahimi-Gorji
The study of novel exponential heat source phenomena across a flowing fluid with a suspension of microparticles and nanoparticles towards a convectively heated plate has been an…
Abstract
Purpose
The study of novel exponential heat source phenomena across a flowing fluid with a suspension of microparticles and nanoparticles towards a convectively heated plate has been an open question. Therefore, the impact of the exponential heat source in the transport of nano micropolar fluid in the existence of magnetic dipole, Joule heating, viscous heating and convective condition effects has been analytically investigated. Influence of chemical reaction has also been exhibited in this discussion.
Design/methodology/approach
The leading equations are constructed via conservation equations of transport, micro-rotation, energy and solute under the non-transient state situation. Suitable stretching transformations are used to transform the system of partial differential equations to ordinary. The transformed ODEs admit numerical solution via Runge–Kutta fourth order method along with shooting technique.
Findings
The effects of pertinent physical parameters characterizing the flow phenomena are presented through graphs and discussed. The inclusion of microparticles and nanoparticles greatly affects the flow phenomena. The impact of the exponential heat source (EHS) advances the heat transfer characteristics significantly compared to usual thermal-based heat source (THS). The thermal performance can be improved through the effects of a magnetic dipole, viscous heating, Joule heating and convective condition.
Originality/value
The effectiveness of EHS phenomena in the dynamics of nano micropolar fluid past an elongated plate which is convectively heated with regression analysis is for the first time investigated.
Details
Keywords
N.S. Shashikumar, Madhu Macha, B.J. Gireesha and Naikoti Kishan
In recent years, microfluidics has turned into a very important region of research because of its wide range of applications such as microheat exchanger, micromixers fuel cells…
Abstract
Purpose
In recent years, microfluidics has turned into a very important region of research because of its wide range of applications such as microheat exchanger, micromixers fuel cells, cooling systems for microelectronic devices, micropumps and microturbines. Therefore, in this paper, micropolar nanofluid flow through an inclined microchannel is numerically investigated in the presence of convective boundary conditions. Heat transport of fluid includes radiative heat, viscous and Joule heating phenomena.
Design/methodology/approach
Governing equations are nondimensionalized by using suitable dimensionless variables. The relevant dimensionless ordinary differential systems are solved by using variational finite element method. Detailed computations are done for velocity, microrotation and temperature functions. The influence of various parameters on entropy generation and the Bejan number is displayed and discussed.
Findings
It is established that the entropy generation rate increased with both Grashof number and Eckert number, while it decreased with nanoparticle volume fraction and material parameter. Temperature is decreased by increasing the volume fraction of Ag nanoparticle dispersed in water.
Originality/value
According to the literature survey and the best of the author’s knowledge, no similar studies have been executed on micropolar nanofluid flow through an inclined microchannel with effect of viscous dissipation, Joule heating and thermal radiation.
Details
Keywords
A. Roja, B.J. Gireesha and B.C. Prasannakumara
Miniaturization with high thermal performance and lower cost is one of the advanced developments in industrial science chemical and engineering fields including microheat…
Abstract
Purpose
Miniaturization with high thermal performance and lower cost is one of the advanced developments in industrial science chemical and engineering fields including microheat exchangers, micro mixers, micropumps, cooling microelectro mechanical devices, etc. In addition to this, the minimization of the entropy is the utilization of the energy of thermal devices. Based on this, in the present investigation, micropolar nanofluid flow through an inclined channel under the impacts of viscous dissipation and mixed convection with velocity slip and temperature jump has been numerically studied. Also the influence of magnetism and radiative heat flux is used.
Design/methodology/approach
The nonlinear system of ordinary differential equations are obtained by applying suitable dimensionless variables to the governing equations, and then the Runge–Kutta–Felhberg integration scheme is used to find the solution of velocity and temperature. Entropy generation and Bejan number are calculated via using these solutions.
Findings
It is established to notice that the entropy generation can be improved with the aspects of viscous dissipation, magnetism and radiative heat flux. The roles of angle of inclination
Originality/value
Electrically conducting micropolar nanofluid flow through an inclined channel subjected to the friction irreversibility with temperature jump and velocity slip under the influence of radiative heat flux has been numerically investigated.
Details