Mouna Gazzah, Boubaker Jaouachi and Faouzi Sakli
The purpose of this paper is to predict the bagging recovery velocity of bagged denim fabric samples. Hence, the authors attempt to carry out a model highlighting and explaining…
Abstract
Purpose
The purpose of this paper is to predict the bagging recovery velocity of bagged denim fabric samples. Hence, the authors attempt to carry out a model highlighting and explaining the impact of some considered frictional parameters such as yarn-to-yarn friction expressed as weft yarn rigidity parameter and metal-to-fabric friction expressed by mean frictional coefficient parameter.
Design/methodology/approach
The statistical analysis steps were implemented using experimental design type Taguchi and thanks to Minitab 14 software. The modeling methodology analyzed in this paper deals with the linear regression method application and analysis. The predictive power of the obtained model is evaluated by comparing the estimated recovery velocity (theoretical) with the actual values. These comparative values are measured after the bagging test and during the relaxation time of the denim fabric samples. The regression coefficient (R2) values as well as the statistical tests (p-values, analysis of variance results) were investigated, discussed and analyzed to improve the findings.
Findings
According to the statistical results given by Taguchi analysis findings, the regression model is very significant (p-regression=0.04 and R2=97 percent) which explains widely the possibility of bagging behavior prediction in the studied experimental field of interest. Indeed the variation (the increase or the decrease) of the frictional input parameters values caused, as a result, the variation of the whole appearance and the shape of the bagged zone expressed by the residual bagging height variations. In spite of their similar compositions and characteristics, the woven bagged fabrics presented differently behaviors in terms of the bagging recovery and kinetic velocity values. After relaxation times which are not the same and relative to different fabric samples, it may be concluded that bagging behavior remained function of the internal frictional stresses, especially yarn-to-yarn and metal-to-fabric ones.
Practical implications
This study is interesting for denim consumers and industrial applications during long and repetitive uses. The paper has practical implications in the clothing appearance and other textile industry, especially in the weaving process when friction forms (yarn-to-yarn, yarn-to-metal frictions) and stresses are drastic. In fact, in terms of the importance to the industrial producers of the materials it helps to provide a first step in an attempt for a better understanding of the stresses involved in bagging of woven fabrics in general and denim fabrics particularly due to important frictional input contributions. They provide the basis for the development of fabrics that can withstand bagging problems. This research may also put forward improved methods of measuring bagginess as function of frictional parameters in order to optimize (minimize) their effects on the bagging behaviors before and after repetitive uses. These experimental, statistical and theoretical findings may be used to predict bagginess of fabrics based on their properties and prevent industrial from the most significant and influential inputs which should be adjusted accurately. This work allows industrial, also, to make more attention, in case of a high-quality level to ensure, to optimize and review yarn behaviors used to produce fabrics against drastic solicitations and minimize frictions forms during experimental spinning and weaving processes.
Originality/value
Until now, there is no sufficient information to evaluate and predict the effect of the yarn-to-yarn friction as well as metal-to-yarn one on the residual bagging behavior. Besides, there is no work that deals with the kinetic recovery evolution as function of frictional inputs to explain accurately the bagging behavior evolution during relaxation time. Therefore, this present work is to investigate and model the residual bagging recovery velocity after bagging test as function of the frictional input parameters of both denim yarn and fabric samples (expressed by the friction caused due to contact from conformator to fabric).
Details
Keywords
Iwona Frydrych and Małgorzata Matusiak
The purpose of this paper is to investigate the relationship between the formability of cotton and cotton/polyester woven fabrics and their selected properties: weft density…
Abstract
Purpose
The purpose of this paper is to investigate the relationship between the formability of cotton and cotton/polyester woven fabrics and their selected properties: weft density, weave and a way of finishing. It shows how the mentioned properties influence fabric formability and analyze a statistical significance of investigated relationships.
Design/methodology/approach
In paper two groups of cotton and cotton/polyester woven fabrics of different structure and a way of finishing have been measured in the range of their basic structural properties as well as bending rigidity and initial Young’s modulus. Formability of investigated fabrics has been calculated on the basis of bending rigidity and initial Young’s modulus. Next, ANOVA has been performed in order to analyze the relationships between the weft density, weave and a way of finishing of woven fabrics and their formability.
Findings
The paper shows that all selected properties of woven fabrics significantly influence their formability as well as that there is statistically significant interaction between mentioned independent factors. It provides empirical results confirming that the influence of raw material composition of investigated cotton and cotton/polyester woven fabrics on the formability of fabrics is statistically insignificant.
Research limitations/implications
Results of investigations can be applied for cotton and cotton-like woven fabrics.
Practical implications
The paper includes implications for woven fabric engineering from the point of view of achieving the expected fabric formability.
Social implications
The results enables the choice of appropriate fabric for the given clothing.
Originality/value
This paper fulfills an identified need to study how the formability of woven fabrics can be shaped by an appropriate selection of their structure and a way of finishing.
Details
Keywords
B. Namiranian, S. Shaikhzadeh Najar and A. Salehzadeh Nobari
The purpose of this paper is to evaluate some important parameters in plate buckling of fused interlining worsted fabric with different weight and laying‐up direction. The article…
Abstract
Purpose
The purpose of this paper is to evaluate some important parameters in plate buckling of fused interlining worsted fabric with different weight and laying‐up direction. The article compares the formability of fused fabric composite by two different methods (Lindberg's hypothesis and fabric assurance by simple testing method).
Design/methodology/approach
Plate buckling compression behavior of fused fabric composite is investigated using a special designed clamp according to Dahlberg's test method.
Findings
The result shows that fusible interlining lay‐up angle significantly influences on buckling parameters. It is indicated that the buckling behavior of fused fabric composite against lay‐up interlining direction is in accordance with interlining buckling behavior. The result of research suggests that the formability behavior of fused fabric composite with interlining lay‐up direction is predictable according to Lindberg's method.
Research limitations/implications
Experimental design is limited at low speed. Further research works are needed to perform buckling behavior of fused fabric composites at higher speeds as well as under cyclic loading conditions.
Originality/value
Compression plate buckling behavior of fused interlining fabrics is predictable against interlining laying‐up direction. The result of this research could be used in the area of garment quality serviceability.
Details
Keywords
J. Amirbayat and B. Namiranian
Aims to analyse the stress distribution in a circular flexible sheet. Part II verifies the theory with experimental work.
Abstract
Purpose
Aims to analyse the stress distribution in a circular flexible sheet. Part II verifies the theory with experimental work.
Design/methodology/approach
The investigation includes analysing the stress distribution in a circular flexible sheet clamped around its circumference under an externally applied force by a spherical object. Movement of the material normal to its original plane is then related to the external force and the elastic properties of the sheet, i.e. the elastic modulus and the Poisson's ratio. The effects of the size of the force‐applying object, relative to the sample radius, are also investigated.
Findings
The relationship between the applied force on the centre of a flexible sheet material by a spherical object and the sag of the sheet was derived. Poisson's ratio has an important role on the mechanism of deformation, restricting the extension of the sheet when it is high and intensifying the discontinuity of the strain at the interface.
Research limitations/implications
The work could be expanded to industrial fabrics and to composite materials.
Practical implications
The two papers provide a first step in an attempt for a better understanding of the stresses involved in bagging of a linear elastic sheet. They provide the basis for the development of fabrics that can withstand bagging problems. This research may also put forward improved methods of measuring bagginess. Some of the theoretical work may be used to predict bagginess of fabrics based on properties.
Originality/value
The paper has two improvements on previous work: the inclusion of the effect of fabric Poisson ratio, and the suggestion of a better method of calculating the overall anisotropic properties.
Details
Keywords
Daiva Juodsnukytė, Virginija Daukantienė and Matas Gutauskas
This paper aims to develop the methodology for the imitation of exploitation conditions of textile products as well as to determine the exploitation peculiarities of…
Abstract
Purpose
This paper aims to develop the methodology for the imitation of exploitation conditions of textile products as well as to determine the exploitation peculiarities of high‐performance fabrics for outdoor clothing producible in Lithuania.
Design/methodology/approach
Static‐ and dynamic‐cyclic loading was applied for the imitation of exploitation conditions as well as for the investigation of the changes in specimen geometrical parameters.
Findings
The differences in the parameters of textile material stability determined under dry and wet cyclic specimen deformation were determined. The investigation results presented show that the parameters of air permeability can be used for the determination of changes in textile product shapes due to their cyclic washing as well as to the other kinds of wet technological treatment, especially in these cases when the small areas of product material are deformed.
Practical implications
The problems concerned with the methodology for the evaluation of exploitation stability of high‐performance fabrics (woven and knitted) for outdoor clothing are analyzed in this research.
Originality/value
In most cases, the exploitation behaviour of textile materials is investigated under uniaxial or static biaxial deformation. For better imitation of real exploitation conditions of textiles the new testing methodology based on two testing methods was established (original device for punch deformation working in creep mode as well as using wet and dry specimens; device ARRV for cyclic fatigue).
Details
Keywords
Mouna Gazzah, Boubaker Jaouachi, Laurence Schacher, Dominique Charles Adolphe and Faouzi Sakli
The purpose of this paper is to predict the appearance of denim fabric after repetitive uses judging the denim cloth behavior and performance in viewpoint of bagging ability…
Abstract
Purpose
The purpose of this paper is to predict the appearance of denim fabric after repetitive uses judging the denim cloth behavior and performance in viewpoint of bagging ability. Hence, it attempts to carry out the significant inputs and outputs that have an influence on the bagging behaviors using the Principal Component Analysis (PCA) technique. In this study, the Kawabata Evaluation System parameters such as the frictional characteristics, the bending, compression, tensile and shear parameters are investigated to propose a model highlighting and explaining their impacts on the different bagging properties. To improve the obtained results, the selected significant inputs are also analyzed within their bagging properties using Taguchi experimental design. The linear regressive models prove the effectiveness of the PCA method and the obtained findings.
Design/methodology/approach
To investigate the mechanical properties and their contributions on the bagging characteristics, some denim fabrics were collected and measured thanks to the Kawabata evaluation systems (KES-FB1, KES-FB2, KES-FB3 and KES-FB4). These bagging properties were further analyzed applying the method of PCA to acquire factor patterns that indicate the most important fabric properties for characterizing the bagging behaviors of different studied denim fabric samples. An experimental design type Taguchi was, hence, applied to improve the results. Regarding the obtained results, it may be concluded that the PCA method remained a powerful and flawless technique to select the main influential inputs and significant outputs, able to define objectively the bagging phenomenon and which should be considered from the next researches.
Findings
According to the results, there are good relationships between the Kawabata input parameters and the analyzed bagging properties of studied denim fabrics. Indeed, thanks to the PCA, it is probably easy to reduce the number of the influent parameters for three reasons. First, applying this technique of selection can help to select objectively the most influential inputs which affect enormously the bagged fabrics. Second, knowing these significant parameters, the prediction of denim fabric bagging seems fruitful and can undoubtedly help researchers explain widely this complex phenomenon. Third, regarding the findings mentioned, it seems that the prevention of this aesthetic phenomenon appearing in some specific zones of denim fabrics will be more and more accurate.
Practical implications
This study is interesting for denim consumers and industrial applications during long and repetitive uses. Undoubtedly, the denim garments remained the largely used and consumed, hence, this particularity proves the necessity to study it in order to evaluate the bagging phenomenon which occurs as function of number of uses. Although it is fashionable to have bagging, the denim fabric remains, in contrast with the worsted ones, the most popular fabric to produce garments. Moreover, regarding this characteristic, the large uses and the acceptable value of denim fabrics, their aesthetic appearance behavior due to bagging phenomenon can be analyzed accurately because compared to worsted fabrics, they have a high value and the repetitive tests to investigate widely bagged zones may fall the industrial. The paper has practical implications in the clothing appearance and other textile industry, especially in the weaving process when friction forms (yarn-to-yarn, yarn-to-metal frictions) and stresses are drastic. This can help understanding why residual bagging behavior remained after garment uses due to the internal stress and excessive extensions. Regarding the selected influential inputs and outputs relative to bagging behaviors, there are some practical implications that have an impact on the industrial and researchers to study objectively the occurrence of this aesthetic phenomenon. Indeed, this study discusses the significance of the overall inputs; their contributions on the denim fabric bagged zones aims to prevent their ability to appear after uses. Moreover, the results obtained regarding the fabric mechanical properties can be useful to fabric and garment producers, designers and consumers in specifying and categorizing denim fabric products, insuring more denim cloth use and controlling fabric value. For applications where the subjective view of the consumer is of primary importance, the KES-FB system yields data that can be used for evaluating fabric properties objectively and prejudge the consumer satisfaction in viewpoint of the bagging ability. Therefore, this study shows that by measuring shear, tensile and frictional parameters of KES-FB, it may be possible to evaluate bagging properties. However, it highlights the importance and the significance of some inputs considered influential or the contrast (non-significant) in other researches.
Originality/value
This work presents the first study analyzing the bagged denim fabric applying the PCA technique to remove the all input parameters which are not significant. Besides, it deals with the relationship developed between the mechanical fabric properties (tensile, shear and frictional stresses) and the bagging properties behavior. To improve these obtained relationships, for the first time, the regression technique and experimental design type Taguchi analysis were both applied. Moreover, it is notable to mention that the originality of this study is to let researchers and industrials investigate the most influential inputs only which have a bearing on the bagging phenomenon.
Details
Keywords
Mouna Gazzah, Boubaker Jaouachi and Faouzi Sakli
The purpose of this paper is to optimize the frictional input parameters related to the yarn and woven fabric samples. Indeed, using metaheuristic techniques for optimization, it…
Abstract
Purpose
The purpose of this paper is to optimize the frictional input parameters related to the yarn and woven fabric samples. Indeed, using metaheuristic techniques for optimization, it helps to attempt the best quality appearance of garment, by analysing their effects and relationships with the bagging behaviour of tested fabrics before and after bagging test. Using metaheuristic techniques allows us to select widely the minimal residual bagging properties and the optimized inputs to adjust them for this goal.
Design/methodology/approach
The metaheuristic methods were applied and discussed. Hence, the genetic algorithms (GA) and ant colony optimization (ACO) technique results are compared to select the best residual bagging behaviour and their correspondent parameters. The statistical analysis steps were implemented using Taguchi experimental design thanks to Minitab 14 software. The modelling methodology analysed in this paper deals with the linear regression method application and analysis to prepare to the optimization steps.
Findings
The regression results are essential for evaluate the effectiveness of the relationships founded between inputs and outputs parameters and for their optimizations in the design of interest.
Practical implications
This study is interesting for denim consumers and industrial applications during long and repetitive uses. Undoubtedly, the denim garments remained the largely used and consumed, hence, this particularity proves the necessity to study it in order to optimize the bagging phenomenon which occurs as function of number of uses. Although it is fashionable to have bagging, the denim fabric remains, in contrast with the worsted ones, the most popular fabric to produce garments. Moreover, regarding this characteristic, the large uses and the acceptable value of denim fabrics, their aesthetic appearance behaviour due to bagging phenomenon can be analysed and optimized accurately because compared to worsted fabrics, they have a high value and the repetitive tests to investigate widely bagged zones can fall the industrial. The paper has practical implications in the clothing appearance and other textile industry, especially in the weaving process when friction forms (yarn-to-yarn, yarn-to-metal frictions) and stresses are drastic. This can help to understand why residual bagging behaviour remained after garment uses due to the internal stress and excessive extensions.
Originality/value
Until now, there is no work dealing with the optimization of bagging behaviour using metaheuristic techniques. Indeed, all investigations are focused on the evaluation and theoretical modelling based on the multi linear regression analysis. It is notable that the metaheuristic techniques such as ACO and GA are used to optimize some difficult problems but not yet in the textile field excepting some studies using the GA. Besides, there is no sufficiently information to evaluate, predict and optimize the effect of the yarn-to-yarn friction as well as metal-to-yarn one on the residual bagging behaviour. Several and different denim fabrics within their different characteristics are investigated to widen the experimental analysis and thus to generalize the results in the experimental design of interest.
Details
Keywords
The purpose of this paper is to assess the possibility of cross-linking silk fabric using citric acid (CA) as the cross-linking agent and nano-TiO2 (NTO) particles as a catalyst…
Abstract
Purpose
The purpose of this paper is to assess the possibility of cross-linking silk fabric using citric acid (CA) as the cross-linking agent and nano-TiO2 (NTO) particles as a catalyst at low temperature and under UV irradiation. This paper also assesses the possibility of treated samples with suitable combinations of CA and NTO to impart multiple functional properties such as self-cleaning and antimicrobial properties.
Design/methodology/approach
In this research, ß-cyclodextrin (ß-CD) grafted onto silk fabric using CA as a crosslinking agent and NTO particles as a catalyst through a pad-dry-cure technique and with UVA irradiation. The effects of different concentrations of CA, ß-CD and NTO particles on some properties of the treated samples are evaluated, and the optimum finishing conditions are obtained. The author also investigated the washing durability of the modified product after ten times of washing.
Findings
The results showed that CA plays the role of a linking agent through an esterification reaction with the hydroxyl groups of both ß-CD and silk fabrics and improves the durability of materials on the textile surface. Also, the silk fabrics treated with CA only were found to have excellent photocatalytic properties and better antibacterial activity than the control sample and the fabrics treated with a mixture of ß-CD/CA.
Originality/value
This study was conducted to achieve multiple functions such as antibacterial and photocatalytic activities, good dry crease recovery angle and wet crease recovery angle behavior without a significant adverse effect on the Yellowness index and tensile properties for treated silk fabrics.
Details
Keywords
Abolfazl Zare and Pedram Payvandy
The purpose of this study is the chemical grafting of β-Cyclodextrin (β-CD) onto silk fabrics by the use of butane tetracarboxylic acid (BTCA) as a crosslinking agent and nano-TiO2…
Abstract
Purpose
The purpose of this study is the chemical grafting of β-Cyclodextrin (β-CD) onto silk fabrics by the use of butane tetracarboxylic acid (BTCA) as a crosslinking agent and nano-TiO2 (NTO) as a catalyst. The effects of different parameters involved in this particular process, e.g. β-CD, BTCA and NTO concentrations, are examined using the artificial neural network (ANN). The method is evaluated for its ability to predict certain properties of treated fabrics, including grafting yield, dry crease recovery angle (DCRA) and wet crease recovery angle (WCRA), tensile strength, elongation at break and methylene blue dye absorption.
Design/methodology/approach
This study was conducted to describe the cross-linking of silk with 1,2,3,4-BTCA as a crosslinking agent in a wet state at low temperatures using NTO catalyst to improve the dry and wet wrinkle recovery (DCRA and WCRA) of silk fabrics. An ANN was also used to model and analyze the effects of BTCA, β-CD and NTO concentrations on the grafting percentage and some properties of the treated samples.
Findings
According to the results, the wet and dry wrinkle recovery of the silk fabrics was improved for about 38% and 11%, respectively, as compared to the non-cross-linked fabrics, without significantly affecting the tensile strength retention of the fabrics.
Originality/value
This research model and analyze the effects of BTCA, β-CD and NTO concentrations on the grafting percentage and some properties of the treated samples for the first time.
Details
Keywords
This study aims to embed anatase, rutile and brookite TiO2 nanoparticles (NPs) with different crystal phases into cotton fabrics by epoxy silane and to examine the effect of these…
Abstract
Purpose
This study aims to embed anatase, rutile and brookite TiO2 nanoparticles (NPs) with different crystal phases into cotton fabrics by epoxy silane and to examine the effect of these applications on the photocatalytic and mechanical properties of the fabric.
Design/methodology/approach
Different aqueous dispersions which contain anatase, rutile and brookite were prepared at three different concentrations (5%, 10% and 15%). These NPs were embedded in cotton fabrics by using GPTS [(3-glycidyloxypropyl) trimethoxysilane]. Characterization tests were performed by scanning electron microscopy (SEM), Raman and Fourier-transform infrared spectroscopy (FT/IR). Samples were stained with methylene blue (MB) and then exposed to solar light for different periods. Color changes of the samples were examined with a spectrophotometer. Air permeability, abrasion and tear strength tests were applied to all samples.
Findings
According to SEM images, the NPs were successfully attached to the cotton fabrics, and epoxy silane coating surrounded the fiber surfaces. The presence of the coating was also confirmed by Raman spectroscopy and FT/IR. The treatments reduced the stainability of the samples. The most effective applications for ensuring photocatalytic activity in cotton fabrics were suspensions as 10% brookite, 10% anatase and 5% anatase, in descending order. The applied coating slightly reduced the samples’ air permeability, and wear and tear strength.
Originality/value
The importance of this study is to determine the optimal crystal phase and its concentration by using epoxy silane to ensure self-cleaning properties on cotton fabrics. The sample treated with 10% brookite is the most approached its original white color by 99.65% as a result of degradation of MB (after 120 min). On the other hand, using the pure rutile with epoxy silane was not suitable for removing MB from the fabric.