Search results

1 – 10 of 33
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 8 September 2012

B. Dikici and I. Ozdemir

The purpose of this paper is to investigate the corrosion behaviour of ferroboron (FeB) and FeB/h‐BN (hexagonal boron nitride) coatings deposited onto A383 substrates by…

268

Abstract

Purpose

The purpose of this paper is to investigate the corrosion behaviour of ferroboron (FeB) and FeB/h‐BN (hexagonal boron nitride) coatings deposited onto A383 substrates by atmospheric plasma spraying.

Design/methodology/approach

Potentiodynamic scanning (PDS) and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion susceptibilities of the composite coatings. Microstructural characterizations were carried out by using scanning electron microscopy (SEM) and energy dispersion spectroscopy (EDS).

Findings

It was observed that the coatings resisted localized corrosion in NaCl solutions and protective oxide films on the coatings repaired themselves over the corrosion potential. Hexagonal‐BN is not only a limiting factor in the corrosion of the FeB based coatings. The corrosion morphologies of the coatings are strictly dependent on pores and micro‐cracks in the coating.

Practical implications

The iron‐based borides act as solid lubricants and have a positive influence on tribological properties such as hardness, friction and corrosion of the coating.

Originality/value

Knowledge of the effects of FeB on the corrosion behaviour of thermal spray coatings is still incomplete and this is the most important obstacle to the widespread use of the coatings in engineering applications. The paper reports electrochemical test results of the coatings and discusses the morphologic effects of h‐BN on the corrosion behaviour.

Details

Anti-Corrosion Methods and Materials, vol. 59 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Access Restricted. View access options
Article
Publication date: 31 May 2024

Amanda de Oliveira e Silva, Alice Leonel, Maisa Tonon Bitti Perazzini and Hugo Perazzini

Brewer's spent grain (BSG) is the main by-product of the brewing industry, holding significant potential for biomass applications. The purpose of this paper was to determine the…

36

Abstract

Purpose

Brewer's spent grain (BSG) is the main by-product of the brewing industry, holding significant potential for biomass applications. The purpose of this paper was to determine the effective thermal conductivity (keff) of BSG and to develop an Artificial Neural Network (ANN) to predict keff, since this property is fundamental in the design and optimization of the thermochemical conversion processes toward the feasibility of bioenergy production.

Design/methodology/approach

The experimental determination of keff as a function of BSG particle diameter and heating rate was performed using the line heat source method. The resulting values were used as a database for training the ANN and testing five multiple linear regression models to predict keff under different conditions.

Findings

Experimental values of keff were in the range of 0.090–0.127 W m−1 K−1, typical for biomasses. The results showed that the reduction of the BSG particle diameter increases keff, and that the increase in the heating rate does not statistically affect this property. The developed neural model presented superior performance to the multiple linear regression models, accurately predicting the experimental values and new patterns not addressed in the training procedure.

Originality/value

The empirical correlations and the developed ANN can be utilized in future work. This research conducted a discussion on the practical implications of the results for biomass valorization. This subject is very scarce in the literature, and no studies related to keff of BSG were found.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Access Restricted. View access options
Article
Publication date: 15 November 2022

Chao Han, Li Ma, Bo Jiang Ma, Guosheng Huang and Ying Xiang Ma

This paper aims to verify weather atmospheric plasma spray (APS) in situ remelting posttreatment is effective for densifying the porous FeCoCrMoCBY amorphous alloy (FAA) coating…

73

Abstract

Purpose

This paper aims to verify weather atmospheric plasma spray (APS) in situ remelting posttreatment is effective for densifying the porous FeCoCrMoCBY amorphous alloy (FAA) coating and improving the antiabrasion and anticorrosion performances or not.

Design/methodology/approach

APS was used to deposit and in situ densify FAA coating on the 40Cr substrate. Scanning electron microscope, X-ray diffractometer, energy dispersive spectroscopy, neutral salt spray, hardness and wear behavior test were used to evaluate the densifying effects.

Findings

APS remelting technology can effectively improve the hardness of the coating by reducing the porosity. After remelting at 30 kW power, the hardness of the coating increased by about 260 HV0.2 and the porosity decreased to 2.78%. The amorphous content of the coating is 93.9%, which is about 3.5% lower than original powders. The electrochemical impedance spectrum and neutral salt spray test results show that APS remelting can reduce the corrosion rate by about 62.7%.

Originality/value

APS remelting method is firstly proposed in this work to replace laser remelting or laser cladding methods. APS remelting method can effectively improve the corrosion and abrasion resistance of the FAA coating by increasing the densification with much low recrystallization, which is big progress for application of FAA coatings.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Access Restricted. View access options
Article
Publication date: 3 February 2020

Santosh Kumar, Manoj Kumar and Neeru Jindal

This paper aims to consolidate the results of various researchers focusing the different applications, so that this paper could become the torch bearer for the futuristic…

1068

Abstract

Purpose

This paper aims to consolidate the results of various researchers focusing the different applications, so that this paper could become the torch bearer for the futuristic researchers working in the domain of cold gas dynamics spray coating.

Design/methodology/approach

A study on the cold spray coating is presented by summarizing the data present in literature. Important factors such as coating temperature, pressure, coating thickness, particle size, which affect the erosion-corrosion (E-C) resistance, physical and mechanical properties of boiler steel are stated. This paper also addresses the use of cold spray coating and compares it with other different thermal spray processes.

Findings

From the literature review, it was noticed that cold spray technology is best as compare to other thermal spray processes to reduce porosity, increase hardness, adhesion strength and retention in properties of feedstock powders.

Originality/value

Cold spray coating technology has a great potential in almost every field especially in restoration of surfaces, generation of complex surface, biomedical application, resist hot corrosion, wear, oxidation and erosion corrosion.

Details

World Journal of Engineering, vol. 17 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Access Restricted. View access options
Article
Publication date: 3 April 2019

Harun Mindivan

This paper aims to investigate the structural, corrosion and the study of tribocorrosion features of the AA7075 aluminum alloy with and without the application of electroless…

197

Abstract

Purpose

This paper aims to investigate the structural, corrosion and the study of tribocorrosion features of the AA7075 aluminum alloy with and without the application of electroless Ni-P/Ni-B duplex coating with a thickness of approximately 40 microns.

Design/methodology/approach

Surface characterization of the samples was made by structural surveys (light optic microscope, scanning electron microscopic examinations and X-ray diffraction analyses), hardness measurements, corrosion and tribocorrosion tests.

Findings

Results of the experiments showed that upper Ni-B coating deposited on the surface of first Ni-P layer by duplex treatment caused remarkable increment in the hardness, corrosion resistance and tribocorrosion performance as compared to the AA7075 aluminum alloy.

Originality/value

This study can be a practical reference and offers insight into the effects of duplex treating on the increase of hardness, corrosion and tribocorrosion performance.

Details

Industrial Lubrication and Tribology, vol. 71 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Access Restricted. View access options
Article
Publication date: 16 October 2024

Mehdi Ranjbar-Roeintan, Sajad Ahmadian and Ali Soleymani

The study aims to predict a low-velocity impact on a plate reinforced with carbon nanotubes (CNTs) using machine learning models.

10

Abstract

Purpose

The study aims to predict a low-velocity impact on a plate reinforced with carbon nanotubes (CNTs) using machine learning models.

Design/methodology/approach

The first-order shear deformation plate theory (FSDT) is used to express the plate displacements filed. The Hertz nonlinear contact law is used to predict the contact between impactor and plate. Using the energy method and Hamilton’s principle, the motion equations are extracted. The six main parameters considered as inputs to machine learning models are CNTs percentage, impactor radius, plate thickness, plate length and width, CNTs distribution profile and impactor initial velocity. These input parameters are used to predict two impact targets including contact force and contact time.

Findings

As the values of the targets are continuous, the machine learning task is considered a regression problem. Therefore, this study uses different regression models to predict the targets. These regression models include linear regression, stochastic gradient descent regressor, Bayesian regression, partial least squares regression, Gaussian process regression, multilayer perceptron regressor, support vector regression and decision tree regression. To validate the effectiveness of the regression models, experiments are designed based on different evaluation metrics. The results of the experiments demonstrate that the machine learning models achieve promising performance in predicting the contact force and contact time based on the input parameters.

Originality/value

Due to the volume of high numerical calculations of impact mechanics to reach the response, the targets of the impact problem are predicted using a variety of machine learning methods.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Access Restricted. View access options
Article
Publication date: 14 August 2023

Abhishek Kansal, Akshay Dvivedi and Pradeep Kumar

The purpose of this study to investigate the organized porous network zinc (OPNZ) scaffolds. Their mechanical characteristics, surface roughness and fracture mechanism were…

236

Abstract

Purpose

The purpose of this study to investigate the organized porous network zinc (OPNZ) scaffolds. Their mechanical characteristics, surface roughness and fracture mechanism were assessed in relation to their structural properties. The prospects of fused deposition modeling (FDM) for printing metal scaffolds via rapid tooling have also been studied.

Design/methodology/approach

Zn scaffolds with different pore and strut sizes were manufactured via the rapid tooling method. This method is a multistep process that begins with the 3D printing of a polymer template. Later, a paraffin template was obtained from the prepared polymer template. Finally, this paraffin template was used to fabricate the Zn scaffold using microwave sintering. The characterization of prepared Zn samples involved structural characterization, microstructural study, surface roughness testing and compression testing. Moreover, based on the Gibson–Ashby model analysis, the model equations’ constant values were evaluated, which can help in predicting the mechanical properties of Zn scaffolds.

Findings

The scanning electron microscopy study confirmed that the fabricated sample pores were open and interconnected. The X-ray diffraction analysis revealed that the Zn scaffold contained hexagonal closed-packed Zn peaks related to the a-Zn phase, validating that scaffolds were free from contamination and impurity. The range for ultimate compressive strength, compressive modulus and plateau stresses for Zn samples were found to be 6.75–39 MPa, 0.14–3.51 GPa and 1.85–12.6 MPa by adjusting their porosity, which are comparable with the cancellous bones. The average roughness value for the Zn scaffolds was found to be 1.86 µm.

Originality/value

This research work can widen the scope for extrusion-based FDM printers for fabricating biocompatible and biodegradable metal Zn scaffolds. This study also revealed the effects of scaffold structural properties like porosity, pore and strut size effect on their mechanical characteristics in view of tissue engineering applications.

Details

Rapid Prototyping Journal, vol. 29 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 24 March 2022

Asli Günay Bulutsuz

Zn has been attracting increasing attention with its biological compatibility property as a degradable implant material. Besides mechanical properties, especially for bone implant…

127

Abstract

Purpose

Zn has been attracting increasing attention with its biological compatibility property as a degradable implant material. Besides mechanical properties, especially for bone implant applications, wear resistance is a crucial mechanical property. The purpose of this study is to investigate HPTed Zn samples’ tribological behavior under dry and simulated body fluid (SBF) lubrication conditions.

Design/methodology/approach

Pure Zn powders were consolidated via the high-pressure torsion (HPT) method with 1, 5 and 10 rotations. Cast pure Zn samples were used as the control group. The wear behavior of pure Zn samples was investigated under dry and SBF lubrication conditions with a ball-on testing method. The wear tracks were observed with a mechanical profilometer and scanning electron microscope (SEM).

Findings

The application of HPT not only improved the mechanical strength and degradation performance but also improved wear resistance. However, tests with SBF resulted in higher wear rates. Besides, SBF significantly masked the positive effect of HPT on the coefficient of friction (COF). Although with SBF tests, 10 HPT rotation samples resulted in the lowest wear width and volume.

Originality/value

The main originality of this study is to reveal the HPT process and SBF effects on the tribological behavior of pure Zn to observe their potential usage for bone implant applications.

Details

Industrial Lubrication and Tribology, vol. 74 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Access Restricted. View access options
Book part
Publication date: 19 November 2013

Aysit Tansel

This chapter aims to provide the recent developments on the supplementary education system in Turkey. The national examinations for advancing to higher levels of schooling are…

Abstract

Purpose

This chapter aims to provide the recent developments on the supplementary education system in Turkey. The national examinations for advancing to higher levels of schooling are believed to fuel the demand for Supplementary Education Centers (SECs). Further, we aim to understand the distribution of the SECs and of the secondary schools across the provinces of Turkey in order to evaluate the spacial equity considerations.

Design/methodology/approach

The evolution of the SECs and of the secondary schools over time are described and compared. The provincial distribution of the SECs, secondary schools, and the high school age population are compared. The characteristics of these distributions are evaluated to inform about spatial equity issues. The distribution of high school age population that attend secondary schools and the distribution of the secondary school students that attend SECs across the provinces are compared.

Findings

The evidence points out to significant provincial variations in various characteristics of SECs and the secondary schools. The distribution of the SECs is more unequal than that of the secondary schools. The provinces located mostly in the east and south east of the country have lower quality SECs and secondary schools. Further, the SEC participation among the secondary school students and the secondary school participation among the relevant age group are lower in some of the provinces indicating major disadvantages.

Originality/value

The review of the most recent developments about the SECs, examination and comparison of provincial distributions of the SECs and of the secondary schools are novelties in this chapter.

Details

Out of the Shadows: The Global Intensification of Supplementary Education
Type: Book
ISBN: 978-1-78190-816-7

Keywords

Access Restricted. View access options
Book part
Publication date: 25 November 2019

M. Nickie Coomer and Kenzie Latham-Mintus

In this chapter, we examine the reflexive interplay of cultural, institutional, organizational, and personal narratives to examine more completely the ways in which successful and…

Abstract

Purpose

In this chapter, we examine the reflexive interplay of cultural, institutional, organizational, and personal narratives to examine more completely the ways in which successful and normative participation in schooling signals the ability and opportunity to participate in life beyond the institution.

Methods/Approach

Using narrative analysis techniques, we analyzed the interviews of eight college students who described their experiences with test anxiety.

Findings

Each individual story and experience points to the ebb and flow of participation and exclusion in the activities of schooling as well as a full participant in life more broadly. Significantly, we find that what it means to be a successful student in higher education has bearing on what it means to be a productive and worthwhile citizen, daughter, son, and partner.

Implication/Value

This research adds needed complexity to the study of test anxiety by highlighting the ways in which higher education settings rely on the medical model of disability to enact their own gatekeeping mechanisms in an effort to “legitimize” disability through acknowledgment and accommodation. Findings point to the ways in which culturally circulating stories of disability can shape organizational responses and how these can shape personal experience.

1 – 10 of 33
Per page
102050