Search results
1 – 9 of 9Many failures of aircraft structural components in the past were attributed to cracks emanating from joints, which are identified as the most critical locations. In cases using…
Abstract
Purpose
Many failures of aircraft structural components in the past were attributed to cracks emanating from joints, which are identified as the most critical locations. In cases using the recently emerging structural health monitoring (SHM) systems, continuous monitoring needs be carried out at many major joint locations. The purpose of this paper is to develop computational techniques for fastener joints, including the possible change in contact conditions and change in boundary values at the pin-hole interface. These techniques are used for the prognostic analysis of pin-loaded lug joints with rigid/elastic pin subjected to fatigue loading by estimating the residual life of the component at any given instance to assist the SHM systems.
Design/methodology/approach
Straight attachment lug joints with rigid/elastic push-fit pin and smooth pin-hole interface are modelled in commercial software MSC PATRAN. In each case, the joint is subjected to various types of fatigue load cycles, and for each type of cycles, the critical locations and the stress concentrations are identified from the stress analysis. Later, for each type of fatigue cycle, the number of cycles required for crack initiation is estimated. A small crack is located at these points, and the number of cycles required to reach the critical length when unstable crack growth occurs is also computed. The novelty in the analysis of life estimations is that it takes into account possible changes in contact conditions at the pin-hole interface during load reversals in fatigue loading.
Findings
The current work on fastener joints brings out the way the load reversals leading to change in contact conditions (consequently changing boundary conditions) are handled during fatigue loading on a push-fit joint. The novel findings are the effect of the size of the hole/lug width, elasticity of the material and the type of load cycles on the fatigue crack initiation and crack growth life. Given other parameters constant, bigger size hole and stiffer pin lead to lesser life. Under load controlled fatigue cycles, pull load contributes to significant part of fatigue life.
Originality/value
The analysis considers the changing contact conditions at the pin-hole interface during fatigue cycles with positive and negative stress ratios. The results presented in this paper are of value to the life prediction of structural joints for various load cycles (for both pull-pull cases, in which the load ratios are positive, and pull-push cycles, where the load ratios are negative). The prognostic data can be used to effectively monitor the critical locations with joints for SHM applications.
Details
Keywords
Bharath Kenchappa, Lokamanya Chikmath and Bhagavatula Dattaguru
Lug joints with fasteners play a crucial role in connecting many major components of the aircraft. Most of the failures in the past were credited to the damages initiating and…
Abstract
Purpose
Lug joints with fasteners play a crucial role in connecting many major components of the aircraft. Most of the failures in the past were credited to the damages initiating and progressing from these types of joints. Ensuring the structural integrity of these fastener joints is a major issue in many engineering structures, especially in aerospace components, which would otherwise lead to fatal failure. The purpose of this paper is to adopting the prognostic approach for analysing these lug joints with fasteners subjected to off-axis loading by estimating the crack initiation and crack growth life of these joints. This data will be useful to estimate the remaining life of these joints at any given stage of operations, which is mandatory in structural health monitoring (SHM).
Design/methodology/approach
Straight and tapered lug joints are modelled using the finite element method in MSC PATRAN and analysed in MSC NASTRAN. These lug joints are analysed with a push fit fastener. The contact/separation regions at the pinâlug interface are carefully monitored throughout the analysis for various loading conditions. Critical locations in these lug joints are identified through stress analysis. Fatigue crack initiation and fatigue crack growth analysed is carried out at these locations for different load ratios. A computational method is proposed to estimate the cycles to reach crack initiation and cycles at which the crack in the lug joint become critical by integrating several known techniques.
Findings
Analysis carried out in this paper describes the importance of tapered lug joints, particularly when subjected to non-conventional way of loading, i.e. off-axis loading. There is a partial loss of contact between pin and lug upon pin loading, and this does not change further with monotonically increasing pin load. But during load reversals, there is a change in contact/separation regions which is effectively handled by inequality constraints in the boundary conditions. Crack growth in these lug joints pertains to mixed-mode cracking and is computed through the MVCCI technique.
Originality/value
Most of the earlier works were carried out on in-plane pin loading along the axis of symmetry of the lug. The current work considers the off-axis pin loading by loading the lug joints with transverse and oblique pin load. The significance of taper angle under such loading condition is brought in this paper. The results obtained in this paper through prognostic approach are of direct relevance to the SHM and damage tolerance design approach where the safety of the structural components is of foremost priority.
Details
Keywords
ZHI‐HUA ZHONG and JAROSLAV MACKERLE
Contact problems are among the most difficult ones in mechanics. Due to its practical importance, the problem has been receiving extensive research work over the years. The finite…
Abstract
Contact problems are among the most difficult ones in mechanics. Due to its practical importance, the problem has been receiving extensive research work over the years. The finite element method has been widely used to solve contact problems with various grades of complexity. Great progress has been made on both theoretical studies and engineering applications. This paper reviews some of the main developments in contact theories and finite element solution techniques for static contact problems. Classical and variational formulations of the problem are first given and then finite element solution techniques are reviewed. Available constraint methods, friction laws and contact searching algorithms are also briefly described. At the end of the paper, a bibliography is included, listing about seven hundred papers which are related to static contact problems and have been published in various journals and conference proceedings from 1976.
Details
Keywords
Lokamanya Chikmath, M.N. Ramanath, Syed Imtiaz and H. Murthy
This paper aims to study the benefits of use of bi-adhesive (combination of two different adhesives) over conventional single adhesive in bonded lap joints. Characterise damage…
Abstract
Purpose
This paper aims to study the benefits of use of bi-adhesive (combination of two different adhesives) over conventional single adhesive in bonded lap joints. Characterise damage severity due to cohesive and adherent failure as feedback for operating load levels that assist in developing damage tolerance design of the adhesively bonded joints.
Design/methodology/approach
Single lap joint where the adherent plate is made up of aluminium alloy joined together with bi-adhesives is analysed. The nature of adhesives ranges from brittle, elastic-plastic, moderately ductile to largely ductile. Numerical analysis is performed considering the material and geometric non-linear behaviour of the joint. The optimum bond ratio of bi-adhesives and the effect of the location of adhesive on the stress distribution are studied. The cohesive zone modelling (CZM) is adopted to account for the cohesive failure of the joint. The adherent plate failure is also addressed by modelling and studying the behaviour of the crack at different locations in the plate using modified virtual crack closure integral (MVCCI).
Findings
The results obtained from the stress analysis show some important characteristic behaviour of the bi-adhesive joint. Although bi-adhesive is expected to result in improved joint strength, the purpose gets defeated if a brittle adhesive is used at the corners and ductile adhesive at the middle. The joint strength based on CZM, evaluated for a single adhesive, is in good comparison with the experimental results from the literature. Also, the location of the crack in the adherent plate plays a significant role in the failure of the joint.
Originality/value
Estimating joint strength for the bi-adhesive model using CZM and evaluating damage severity in the presence of de-bond and crack in the bi-adhesive lap joint model assists in developing robust damage tolerance design models of such joints.
Details
Keywords
Recep M. Gorguluarslan, Umesh N. Gandhi, Yuyang Song and Seung-Kyum Choi
Methods to optimize lattice structure design, such as ground structure optimization, have been shown to be useful when generating efficient design concepts with complex truss-like…
Abstract
Purpose
Methods to optimize lattice structure design, such as ground structure optimization, have been shown to be useful when generating efficient design concepts with complex truss-like cellular structures. Unfortunately, designs suggested by lattice structure optimization methods are often infeasible because the obtained cross-sectional parameter values cannot be fabricated by additive manufacturing (AM) processes, and it is often very difficult to transform a design proposal into one that can be additively designed. This paper aims to propose an improved, two-phase lattice structure optimization framework that considers manufacturing constraints for the AM process.
Design/methodology/approach
The proposed framework uses a conventional ground structure optimization method in the first phase. In the second phase, the results from the ground structure optimization are modified according to the pre-determined manufacturing constraints using a second optimization procedure. To decrease the computational cost of the optimization process, an efficient gradient-based optimization algorithm, namely, the method of feasible directions (MFDs), is integrated into this framework. The developed framework is applied to three different design examples. The efficacy of the framework is compared to that of existing lattice structure optimization methods.
Findings
The proposed optimization framework provided designs more efficiently and with better performance than the existing optimization methods.
Practical implications
The proposed framework can be used effectively for optimizing complex lattice-based structures.
Originality/value
An improved optimization framework that efficiently considers the AM constraints was reported for the design of lattice-based structures.
Details
Keywords
Haykel Marouani and Tarek Hassine
Pin-loaded hubs with fitted bush are used in industrial connector-type elements. They are subjected to varying radial forces leading to variable stress distribution. The…
Abstract
Purpose
Pin-loaded hubs with fitted bush are used in industrial connector-type elements. They are subjected to varying radial forces leading to variable stress distribution. The literature provides various pressure distribution expressions adapted essentially for symmetric geometries and fixed load condition (circular hubs, half-infinite geometries, axial load, tangential load, etc.). This study aims to take into account the geometrical conditions of industrial connector-type elements and presents a model for pressure distribution based only on geometric parameters, maximal pressure and contact angle value for the case of fit pin-loaded hub.
Design/methodology/approach
The finite element computation for the contact problem shows that the pressure distribution of the pin-loaded hub under various inclined forces (from 0° to 180°) is a parabolic distribution. This distribution can be defined by three parameters which are θA, θB and Pmax. The study assumes that the distribution is symmetric and that Pmax can be modeled using force F, hub radius R, hub thickness b and the half contact angle are θA.
Findings
The new proposal pressure distribution parameters are easy to identify. Even for the non-symmetric pressure distribution, the study denotes that the errors on evaluating θA and θB keep the analytical model still in good agreement with finite element computations.
Research limitations/implications
Only the neat fit case was studied.
Practical/implications
Pin-loaded joints are connector-type elements used in mechanical assemblies to connect any structural components and linkage mechanisms such as connecting rod ends of automotive or shear joints for aircraft structure.
Originality/value
The good correlation between finite element computations and model results shows the validity of the assumptions adopted here. Analytical fatigue models, based on this stress distribution, could be derived in view of a fatigue lifetime calculation on connecting hub. Friction, pin deformation and local plastic effects under pin-loading are the main phenomena to take into account to further enrich this model.
Details
Keywords
Parviz Moradipour, Jamaloddin Noorzaei, Mohd Saleh Jaafar and Farah Nora Aznieta Abdul Aziz
In structural, earthquake and aeronautical engineering and mechanical vibration, the solution of dynamic equations for a structure subjected to dynamic loading leads to a high…
Abstract
Purpose
In structural, earthquake and aeronautical engineering and mechanical vibration, the solution of dynamic equations for a structure subjected to dynamic loading leads to a high order system of differential equations. The numerical methods are usually used for integration when either there is dealing with discrete data or there is no analytical solution for the equations. Since the numerical methods with more accuracy and stability give more accurate results in structural responses, there is a need to improve the existing methods or develop new ones. The paper aims to discuss these issues.
Design/methodology/approach
In this paper, a new time integration method is proposed mathematically and numerically, which is accordingly applied to single-degree-of-freedom (SDOF) and multi-degree-of-freedom (MDOF) systems. Finally, the results are compared to the existing methods such as Newmark's method and closed form solution.
Findings
It is concluded that, in the proposed method, the data variance of each set of structural responses such as displacement, velocity, or acceleration in different time steps is less than those in Newmark's method, and the proposed method is more accurate and stable than Newmark's method and is capable of analyzing the structure at fewer numbers of iteration or computation cycles, hence less time-consuming.
Originality/value
A new mathematical and numerical time integration method is proposed for the computation of structural responses with higher accuracy and stability, lower data variance, and fewer numbers of iterations for computational cycles.
Details
Keywords
A. Sellitto, R. Borrelli, F. Caputo, A. Riccio and F. Scaramuzzino
The purpose of this paper is to investigate on the behaviour of a delaminated stiffened panel; the delamination growth is simulated via fracture elements implemented in B2000++Â…
Abstract
Purpose
The purpose of this paper is to investigate on the behaviour of a delaminated stiffened panel; the delamination growth is simulated via fracture elements implemented in B2000++ÂŽ code based on the Modified Virtual Crack Closure Technique (MVCCT), matrix cracking and fibre failure have been also taken into account.
Design/methodology/approach
In order to correctly apply the MVCCT on the delamination front a very fine three-dimensional (3D) mesh is required very close to the delaminated area, while a 2D-shell model has been employed for the areas of minor interest. In order to couple the shell domain to the solid one, shell-to-solid coupling elements based on kinematic constraints have been used.
Findings
Results obtained with the global/local approach are in good correlation with those obtained with experimental results.
Originality/value
The global/local approach based on kinematic coupling elements in conjunction with fracture elements allows to investigate and predict the behaviour of a stiffened delaminated composite panel in an efficient and effective way.
Details
Keywords
Yizhi Guo, Xianlong Jin and Junhong Ding
Taking into account the longâterm influences of the nonâlinear behavior of the material as well as the large deformation and contact conditions, the limiting factors of the…
Abstract
Purpose
Taking into account the longâterm influences of the nonâlinear behavior of the material as well as the large deformation and contact conditions, the limiting factors of the computer simulation are the computer runtime and the memory requirement during solution of seismic response analysis for immersed tunnel. This research aims to overcome these problems.
Design/methodology/approach
This research deals with parallel explicit finite element simulation with domain decomposition for seismic response analysis of immersed tunnel, which is the nonâlinear and timeâdependent behavior of complex structures in engineering. A domain decomposition method based on parallel contact algorithm and dynamicâexplicit time integration procedure are used, and the latter is used for the solution of the semiâdiscrete equations of motion, which is very suited for parallel processing. Using the high performance computer SGI Onyx3800, the seismic response analysis of the immersed tunnel in Shanghai is processed with more than 1.2 million nodes and more than 1 million elements in final finite element model.
Findings
The results show numerical scalability of this algorithm and reveal the dangerous joints in this immersed tunnel under Tangshan seismic acceleration, and it could also provide references for the antiseismic design of the immersed tunnel.
Originality/value
With the increasing demands in the scale, accuracy and speed of numerical simulation in geotechnical engineering, parallel computing has its great application in this area. This paper fulfils an identified method need, and it is believed more and more research work will be devoted to this research field in the near future.
Details