Search results

1 – 3 of 3
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 1 June 2004

B. Butrylo, F. Musy, L. Nicolas, R. Perrussel, R. Scorretti and C. Vollaire

This paper presents new trends in parallel methods used to solve finite element matrix systems: standard iterative and direct solving methods first, and then domain decomposition…

734

Abstract

This paper presents new trends in parallel methods used to solve finite element matrix systems: standard iterative and direct solving methods first, and then domain decomposition methods. For example, the current status and properties of two prevailing programming environments (PVM and MPI) are finally given and compared when implemented together with a finite element time domain formulation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 23 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 1 September 2004

Andrzej Jordan and Carsten Maple

Discusses a parallel algorithm for the finite‐difference time domain method. In particular, investigates electromagnetic field propagation in two and three dimensions. The…

394

Abstract

Discusses a parallel algorithm for the finite‐difference time domain method. In particular, investigates electromagnetic field propagation in two and three dimensions. The computational intensity of such problems necessitates the use of multiple processors to realise solutions to interesting problems in a reasonable time. Presents the parallel algorithm with examples, and uses aspects of graph theory to examine the communication overhead of the algorithm in practice. This is achieved by observing the dynamically changing adjacency matrix of the communications graph.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 23 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 1 April 2014

Jerzy Golebiowski and Robert Piotr Bycul

The purpose of this paper is to prepare procedures for determination of characteristics and parameters of DC cables on the basis of transient and steady thermal field distribution…

101

Abstract

Purpose

The purpose of this paper is to prepare procedures for determination of characteristics and parameters of DC cables on the basis of transient and steady thermal field distribution in their cross-sections.

Design/methodology/approach

Steady-state current rating was computed iteratively, with the use of steady thermal field distribution in the cable. The iterative process was regulated with respect to this field by changes of the mean surface temperature of the sheath of the cable. It was also controlled with respect to the unknown current rating by deviations of the temperature of the core from the maximum sustained temperature of the insulation (material zone) adjacent to the core. Heating curves were determined (in arbitrarily selected points of the cross-section of the cable) by a parallel algorithm described thoroughly in the first part of the paper. The algorithm was used for computing of transient thermal field distribution throughout the whole cross-section. Thermal time constant distributions were determined by the trapezium rule, where the upper integration limit of respective thermal field distributions was being changed.

Findings

Using the methods prepared the following characteristics/parameters of the cable were determined: steady-state current rating, spatial-time heating curves, mean thermal time constant distribution. The results were verified and turned to be in conformance with those of the IEC 287 Standard and a commercial software – Nisa v. 16. Speedup and efficiency of the parallel computations were calculated. It was concluded that the parallel computations took less time than the sequential ones.

Research limitations/implications

The specialized algorithms and software are dedicated to cylindrical DC cables.

Practical implications

The knowledge of the determined characteristics and parameters contributes to optimal exploitation of a DC cable during its use.

Originality/value

The algorithms of determination of the steady-state current rating and thermal time constant are original. The software described in the appendix has also been made by the authors.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 3 of 3
Per page
102050