Search results

1 – 10 of 28
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 11 February 2019

S.M.T. Fatemi Ghomi and B. Asgarian

Finding a rational approach to maintain a freshness of foods and perishable goods and saving their intrinsic attributes during a distribution of these products is one of the main…

594

Abstract

Purpose

Finding a rational approach to maintain a freshness of foods and perishable goods and saving their intrinsic attributes during a distribution of these products is one of the main issues for distribution and logistics companies. This paper aims to provide a framework for distribution of perishable goods which can be applied for real life situations.

Design/methodology/approach

This paper proposes a novel mathematical model for transportation inventory location routing problem. In addition, the paper addresses the impact of perishable goods age on the demand of final customers. The model is optimally solved for small- and medium-scale problems. Moreover, regarding to NP-hard nature of the proposed model, two simple and one hybrid metaheuristic algorithms are developed to cope with the complexity of problem in large scale problems.

Findings

Numerical examples with different scenarios and sensitivity analysis are conducted to investigate the performance of proposed algorithms and impacts of important parameters on optimal solutions. The results show the acceptable performance of proposed algorithms.

Originality/value

The authors formulate a novel mathematical model which can be applicable in perishable goods distribution systems In this regard, the authors consider lost sale which is proportional to age of products. A new hybrid approach is applied to tackle the problem and the results show the rational performance of the algorithm.

Details

Journal of Modelling in Management, vol. 14 no. 1
Type: Research Article
ISSN: 1746-5664

Keywords

Access Restricted. View access options
Article
Publication date: 8 December 2020

Mahmoud Awad, Malick Ndiaye and Ahmed Osman

Cold supply chain (CSC) distribution systems are vital in preserving the integrity and freshness of transported temperature sensitive products. CSC is also known to be energy…

2158

Abstract

Purpose

Cold supply chain (CSC) distribution systems are vital in preserving the integrity and freshness of transported temperature sensitive products. CSC is also known to be energy intensive with a significant emission footprint. As a result, CSC requires strict monitoring and control management system during storage and transportation to improve safety and reduce profit losses. In this research, a systematic review of recent literature related to the distribution of food CSC products is presented and possible areas to extend research in modeling and decision-making are identified.

Design/methodology/approach

The paper analyzes the content of 65 recent articles related to CSC and perishable foods. Several relevant keywords were used in the initial search, which generated a list of 214 articles. The articles were screened based on content relevance in terms of food vehicle routing modeling and quality. Selected articles were categorized and analyzed based on cost elements, modeling framework and solution approach. Finally, recommendations for future research are suggested.

Findings

The review identified several research gaps in CSC logistics literature, where more focused research is warranted. First, the review suggests that dynamic vehicle modeling and routing while considering products quality and environmental impacts is still an open area for research. Second, there is no consensus among researchers in terms of quality degradation models used to assess the freshness of transported cold food. As a result, an investigation of critical parameters and quality modeling is warranted. Third, and due to the problem complexity, there is a need for developing heuristics and metaheuristics to solve such models. Finally, there is a need for extending the single product single compartment CSC to multi-compartment multi-temperature routing modeling.

Originality/value

The article identified possible areas to extend research in CSC distribution modeling and decision-making. Modified models that reflect real applications will help practitioners, food authorities and researchers make timely and more accurate decisions that will reduce food waste and improve the freshness of transported food.

Details

The International Journal of Logistics Management, vol. 32 no. 2
Type: Research Article
ISSN: 0957-4093

Keywords

Access Restricted. View access options
Article
Publication date: 12 June 2017

Farshad Hashemi Rezvani, Behrouz Behnam, Hamid Reza Ronagh and M. Shahria Alam

The purpose of this paper is to determine the failure progression resistance of the steel moment-resisting frames subjected to various beam-removal scenarios after application of…

171

Abstract

Purpose

The purpose of this paper is to determine the failure progression resistance of the steel moment-resisting frames subjected to various beam-removal scenarios after application of the design earthquake pertinent to the structure by investigating a generic eight-story building.

Design/methodology/approach

The structure is first pushed to arrive at a target roof displacement corresponding to life safety level of performance. To simulate the post-earthquake beam-removal scenario, one of the beam elements is suddenly removed from the structure at a number of different positions. The structural response is then evaluated by using nonlinear static and dynamic analyses.

Findings

The results show that while no failure is observed in all of the scenarios, the vulnerability of the upper stories is much greater than that of the lower stories. In the next step, the structural resistance to such scenarios is determined. The results confirm that for the case study structure, at most, the resistance to failure progression in upper stories is 58 percent more than that of lower stories.

Originality/value

Failure and fracture of beam-to-column connections resulting in removal of beam elements may lead to a chain of subsequent failures in other structural members and eventually lead to progressive collapse in some cases. Deficiency in design or construction process of structures when combined by application of seismic loads may lead to such an event.

Details

International Journal of Structural Integrity, vol. 8 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Access Restricted. View access options
Article
Publication date: 23 September 2020

Fatimah De'nan, Nor Salwani Hashim and Lim Cheng Kuan

Tapered section can resist maximum stress at a single location while the stresses are considerably lower at the rest of the member; therefore, it could have higher structural…

96

Abstract

Purpose

Tapered section can resist maximum stress at a single location while the stresses are considerably lower at the rest of the member; therefore, it could have higher structural efficiency compared to conventional section. It could also satisfy functional requirements while reducing weight and cost in many fields of civil construction. Perforation in the steel section also eases the integration of Mechanical and Electrical (M&E) services such as ventilation pipes and electrical cables within the structural depths of the beam. In this analysis, the structural efficiency of tapered steel section with perforation under lateral-torsional buckling behaviour is investigated.

Design/methodology/approach

A total of 81 models are analysed using LUSAS software and five variables are investigated which involved perforation sizes, perforation shapes, perforation layout, tapering ratio and flange and Web thickness. Buckling moment is obtained from the analysis results in LUSAS software, while self-weight and structural efficiency are manually calculated.

Findings

Perforation size of 0.75 D has the highest structural efficiency, although it can withstand a smaller buckling load. This is due to its lower self-weight compared to other perforation sizes. The square perforation shape also has the highest structural efficiency compared to circular perforation and diamond perforation. An increment of percentage in structural efficiency of the square perforation shape with 0.75 D is the highest at 3.07%. The circular perforation shape with 0.75 D (Open-Open-Open perforation layout) has the highest increment of percentage in structural efficiency which is 2.37%. The tapering ratio of 0.3 is the most efficient and an increment of percentage in structural efficiency is 114.36%. The flange thickness of 0.02 m and Web thickness of 0.015 m has the highest structural efficiency at 45.756 and 29.171, respectively.

Originality/value

In conclusion, a section should be able to resist the large buckling moment and has a lower self-weight to achieve high structural efficiency.

Details

World Journal of Engineering, vol. 17 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Access Restricted. View access options
Article
Publication date: 3 August 2021

Kuppulakshmi V, Sugapriya C and Nagarajan Deivanayagam Pillai

This research formulated to obtain the optimum ordered quantity and optimum inventory range of fish products under the conditions: (1) fully back ordered (lockdown) and (2…

489

Abstract

Purpose

This research formulated to obtain the optimum ordered quantity and optimum inventory range of fish products under the conditions: (1) fully back ordered (lockdown) and (2) partial back ordered (normal geographical market). In both the cases, due to the deterioration nature and in quarantine situation some vendors are not able to satisfy the customers (retailers). So in this model, the cost of penalty is introduced in quarantine time to obtain the optimal total cost.

Design/methodology/approach

To find the total cost, holding cost, shortage cost and deterioration cost have to be considered. There are so many disadvantages in holding the deteriorating food products. Due to the demand and deterioration, the holding cost of the fish products is determined. The supply chain of fish marketing process to find the optimum total cost and optimum back ordered quantity in the two situations, namely, (1) normal backordering and (2) Quarantine period is explained.

Findings

The conclusion of this research is exhibited for the uncertain lockdown situation and the normal geographical markets. But in both the cases, the demand function is dependent on the backorder quantity. The expected total cost of the retailers of fish products increased at the least possible range with the increase in the shortage parameter, cost of penalty and variance. But the change in mean value leads to decreasing in the back ordered quantity, inventory level and the annual total cost of the retailers. This analysis contributes to the service of supply chain from wholesaler to retailer in high level.

Research limitations/implications

Fish products are very essential for nourishment and economic spread in India. This study has spotlight the efficient method for reducing the total cost of the retailers of fish marketing. The cost of deterioration of fish is high because of its perishable nature. Due to lockdown situation, the holding cost of the fish products depends upon the backordered quantity of geographical market of fish.

Practical implications

This research formulated to obtain the optimum ordered quantity and optimum inventory range of fish products under the conditions: (1) fully back ordered (lockdown) and (2) partial back ordered (normal geographical market).

Social implications

Due to lockdown situation, the holding cost of the fish products depends upon the backordered quantity of geographical market of fish. This research formulated to obtain the optimum ordered quantity and optimum inventory range of fish products.

Originality/value

This research formulated to obtain the optimum ordered quantity and optimum inventory range of fish products under the conditions: (1) fully back ordered (lockdown) and (2) partial back ordered (normal geographical market). In both the cases, due to the deterioration nature and in quarantine situation some vendors are not able to satisfy the customers (retailers). So in this model, the cost of penalty is introduced in quarantine time to obtain the optimal total cost. A few number of sensitivity analysis are carried out for deterioration rate, shortage parameter and cost of penalty to indicate the existence of total cost in the least possible range.

Details

Journal of Advances in Management Research, vol. 19 no. 2
Type: Research Article
ISSN: 0972-7981

Keywords

Access Restricted. View access options
Article
Publication date: 28 April 2023

Fatimah De’nan, Nor Salwani Hashim and Ngo Siew Ting

Recently, this steel section has found increasing popularity in residential, industrial and commercial buildings with their high load-carrying capacity due to the nature of high…

83

Abstract

Purpose

Recently, this steel section has found increasing popularity in residential, industrial and commercial buildings with their high load-carrying capacity due to the nature of high strength to weight ratio properties. However, the rise on the price of steel section should be more emphasized; therefore, the optimization in steel section design is needed to overcome the issue of material cost. As such, tapered steel sections save on material use, while the introduction of web openings allows the placement of mechanical and electrical services, plumbing and also aesthetic design considerations.

Design/methodology/approach

The purpose of this study is to investigate the lateral torsional buckling behavior of a tapered steel section with an ellipse-shaped opening by analyzing its structural parameters. To achieve this, the finite element analysis (FEA) of the section is modeled using LUSAS software, which allows for a detailed analysis of the section's behavior under varying loads and conditions. It involves the variation in web opening size, opening layout, opening rotation angle and the tapering ratio. Eigenvalue buckling analysis is adopted to know the parametric effects of each 108 model. The size of opening varies from 0.2 to 0.5 d of the total depth where the opening located. There are three type of layouts applied in this study, which are the layouts A, B and C. There are three types of rotation angles for the ellipse-shaped opening, including the non-rotated vertical opening and two additional types formed by rotating the opening 45 degrees clockwise and counterclockwise around the center-point of the ellipse. A fixed-free boundary condition was applied, resulting in a simulation of a cantilever beam. The models are fixed at one end with a larger depth, and free at the other end with a smaller depth. Loading condition is an application of 10 kN/m uniform distributed load in the direction of gravity along the mid-span of the top flange.

Findings

It is observed that the model 82 with Layout A, tapering ratio 0.3, opening size 0.5 d and opening rotated in 45 degree anti-clockwise direction results in the highest structural efficiency among the 108 models. Therefore, the buckling moment of model 82 is 1,013.08 kNm with structural efficiency of 481.26, which shows an increase of 3.17% compared to the controlled model.

Originality/value

The FEA results shows a significant increase in ductility and stiffness of the tapered steel section with elipse shape opening and consequently changes in the behaviour of yield point.

Details

World Journal of Engineering, vol. 21 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Access Restricted. View access options
Article
Publication date: 17 January 2022

Leila Hashemi, Armin Mahmoodi, Milad Jasemi, Richard C. Millar and Jeremy Laliberté

In the present research, location and routing problems, as well as the supply chain, which includes manufacturers, distributor candidate sites and retailers, are explored. The…

303

Abstract

Purpose

In the present research, location and routing problems, as well as the supply chain, which includes manufacturers, distributor candidate sites and retailers, are explored. The goal of addressing the issue is to reduce delivery times and system costs for retailers so that routing and distributor location may be determined.

Design/methodology/approach

By adding certain unique criteria and limits, the issue becomes more realistic. Customers expect simultaneous deliveries and pickups, and retail service start times have soft and hard time windows. Transportation expenses, noncompliance with the soft time window, distributor construction, vehicle purchase or leasing, and manufacturing costs are all part of the system costs. The problem's conceptual model is developed and modeled first, and then General Algebraic Modeling System software (GAMS) and Multiple Objective Particle Swarm Optimization (MOPSO) and non-dominated sorting genetic algorithm II (NSGAII) algorithms are used to solve it in small dimensions.

Findings

According to the mathematical model's solution, the average error of the two suggested methods, in contrast to the exact answer, is less than 0.7%. In addition, the performance of algorithms in terms of deviation from the GAMS exact solution is pretty satisfactory, with a divergence of 0.4% for the biggest problem (N = 100). As a result, NSGAII is shown to be superior to MOSPSO.

Research limitations/implications

Since this paper deals with two bi-objective models, the priorities of decision-makers in selecting the best solution were not taken into account, and each of the objective functions was given an equal weight based on the weighting procedures. The model has not been compared or studied in both robust and deterministic modes. This is because, with the exception of the variable that indicates traffic mode uncertainty, all variables are deterministic, and the uncertainty character of demand in each level of the supply chain is ignored.

Practical implications

The suggested model's conclusions are useful for any group of decision-makers concerned with optimizing production patterns at any level. The employment of a diverse fleet of delivery vehicles, as well as the use of stochastic optimization techniques to define the time windows, demonstrates how successful distribution networks are in lowering operational costs.

Originality/value

According to a multi-objective model in a three-echelon supply chain, this research fills in the gaps in the link between routing and location choices in a realistic manner, taking into account the actual restrictions of a distribution network. The model may reduce the uncertainty in vehicle performance while choosing a refueling strategy or dealing with diverse traffic scenarios, bringing it closer to certainty. In addition, two modified MOPSO and NSGA-II algorithms are presented for solving the model, with the results compared to the exact GAMS approach for medium- and small-sized problems.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 15 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Access Restricted. View access options
Article
Publication date: 3 June 2021

Parviz Fattahi and Mehdi Tanhatalab

This study aims to design a supply chain network in an uncertain environment while exists two options for distribution of the perishable product and production lot-sizing is…

462

Abstract

Purpose

This study aims to design a supply chain network in an uncertain environment while exists two options for distribution of the perishable product and production lot-sizing is concerned.

Design/methodology/approach

Owing to the complexity of the mathematical model, a solution approach based on a Lagrangian relaxation (LR) heuristic is developed which provides good-quality upper and lower bounds.

Findings

The model output is discussed through various examples. The introduction of some enhancements and using some heuristics results in better outputs in the solution procedure.

Practical implications

This paper covers the modeling of some real-world problems in which demand is uncertain and managers face making some concurrent decisions related to supply chain management, transportation and logistics and inventory control issues. Furthermore, considering the perishability of product in modeling makes the problem more practically significant as these days there are many supply chains handling dairy and other fresh products.

Originality/value

Considering uncertainty, production, transshipment and perishable product in the inventory-routing problem makes a new variant that has not yet been studied. The proposed novel solution is based on the LR approach that is enhanced by some heuristics and some valid inequalities that make it different from the current version of the LR used by other studies.

Access Restricted. View access options
Article
Publication date: 5 June 2019

Apostolos Koukouselis, Konstantinos Chatziioannou, Euripidis Mistakidis and Vanessa Katsardi

The design of compliant towers in deep waters is greatly affected by their dynamic response to wave loads as well as by the geometrical and material nonlinearities that appear. In…

161

Abstract

Purpose

The design of compliant towers in deep waters is greatly affected by their dynamic response to wave loads as well as by the geometrical and material nonlinearities that appear. In general, a nonlinear time history dynamic analysis is the most appropriate one to be applied to capture the exact response of the structure under wave loading. However, this type of analysis is complex and time-consuming. This paper aims to develop a simplified methodology, which can adequately approximate the maximum response yielded by a dynamic analysis by means of a static analysis.

Design/methodology/approach

Various types of time history dynamic analysis are first applied on a detailed structural model, ranging from linear to fully nonlinear, that are used as reference solutions. In the sequel, a simplified analysis model is formulated, capable of reproducing the response of the entire structure with significantly reduced computational cost. In the next stage, this model is used to obtain the linear and nonlinear response spectra of the structure. Finally, these spectra are used to formulate a simplified design approach, based on equivalent static loads.

Findings

This simplified design approach produces good results in cases that the response is mainly governed by the first eigenmode, which is the case when compliant towers are considered.

Originality/value

The present paper borrows ideas from the area of earthquake engineering, where simplified methodologies can be used for the design of a certain class of structures. However, the development of a simplified methodology for the approximation of the dynamic behavior of offshore structures under wave loading is a much more complex problem, which, to the authors’ knowledge, has not been addressed till now.

Details

Engineering Computations, vol. 36 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Access Restricted. View access options
Article
Publication date: 6 February 2024

Farshid Rashidiyan, Seyed Rasoul Mirghaderi, Saeed Mohebbi and Sina Kavei

This research study focuses on investigating the seismic performance of non-straight beams in steel structures and exploring the mechanism by which plastic hinges are formed…

43

Abstract

Purpose

This research study focuses on investigating the seismic performance of non-straight beams in steel structures and exploring the mechanism by which plastic hinges are formed within these beams. The findings contribute to the understanding of their behaviour under seismic loads and offer insights into their potential for enhancing the lateral resistance of the structure. The abstract of the study highlights the significance of corners in structural plans, where non-coaxial columns, diagonal elements or beams deviating from a straight path are commonly observed. Typically, these non-straight beams are connected to the columns using pinned connections, despite their unknown seismic behaviour. Recognizing the importance of generating plastic hinges in special moment resisting frames and the lack of previous research on the involvement of these non-straight beams, this study aims to address this knowledge gap.

Design/methodology/approach

This study examines the seismic behaviour and plastic hinge formation of non-straight beams in steel structures. Non-straight beams are beams that connect non-coaxial columns and diagonal elements, or deviate from a linear path. They are usually pinned to the columns, and their seismic contribution is unknown. A critical case with a 12-m non-straight beam is analysed using Abaqus software. Different models are created with varying cross-section shapes and connection types between the non-straight beams. The models are subjected to lateral monotonic and cyclic loads in one direction. The results show that non-straight beams increase the lateral stiffness, strength and energy dissipation of the models compared to disconnected beams that act as two cantilevers.

Findings

The analysis results reveal several key findings. The inclusion of non-straight beams in the models leads to increased lateral stiffness, strength and energy dissipation compared to the scenario where the beams are disconnected and act as two cantilever beams. Plastic hinges are formed at both ends of the non-straight beam when a 3% drift is reached, contributing to energy damping and introducing plasticity into the structure. These results strongly suggest that non-straight beams play a significant role in enhancing the lateral resistance of the system. Based on the seismic analysis results, this study recommends the utilization of non-straight beams in special moment frames due to the formation of plastic hinges within these beams and their effective participation in resisting lateral seismic loads. This research fills a critical gap in understanding the behaviour of non-straight beams and provides valuable insights for structural engineers involved in the design and analysis of steel structures.

Originality/value

The authors believe that this research will greatly contribute to the knowledge and understanding of the seismic performance of non-straight beams in steel structures.

1 – 10 of 28
Per page
102050