Search results
1 – 2 of 2Azita Asayesh and Fatemeh Kolahi Mahmoodi
Pilling and abrasion resistance are two of the most important mechanical properties of the fabric that influence the appearance and performance of the fabric, particularly in the…
Abstract
Purpose
Pilling and abrasion resistance are two of the most important mechanical properties of the fabric that influence the appearance and performance of the fabric, particularly in the case of knitted fabrics. Since, these fabric features are affected by fabric structure the aim of present research is to investigate how utilizing miss stitches and tuck stitches in the fabric structure for design purposes will influence the pilling and abrasion resistance of interlock weft-knitted fabrics.
Design/methodology/approach
In this research, interlock fabrics with different number of miss or tuck stitches on successive Wales were produced and pilling performance and abrasion resistance of the fabrics were investigated.
Findings
The results revealed that increasing the number of miss/tuck stitches on successive Wales decreases the abrasion resistance and enhances the pilling tendency of the fabric. The presence of miss/tuck stitches on both sides of the fabric improves the abrasion resistance and pilling performance of the fabric compared to fabrics containing these stitches on one side of the fabric. Furthermore, the fabric resistance against abrasion and pilling is higher in fabrics consisting of miss stitches compared to fabrics consisting of tuck stitches.
Originality/value
The use of tuck and miss stitches in designing the weft-knitted fabrics is a common method for producing fabrics with variety of knit patterns. Since pilling and abrasion resistance of the fabric influence on its appearance and performance, and none of the previous research studied the pilling and abrasion resistance of interlock-knitted fabrics from the point of presence of tuck and miss stitches on successive Wales of the fabric, this subject has been surveyed in the present research.
Details
Keywords
Azita Asayesh, Mehraneh Talaei and Mohammad Maroufi
Fabric structural parameters play an important role on the thermal comfort of clothing. The purpose of this paper is to investigate the effect of weave pattern and also the length…
Abstract
Purpose
Fabric structural parameters play an important role on the thermal comfort of clothing. The purpose of this paper is to investigate the effect of weave pattern and also the length of warp float in each weave pattern on the thermal properties of woven fabrics.
Design/methodology/approach
Cotton woven fabrics with 23 different weave patterns were produced with identical linear densities of warp and weft yarns as well as constant warp and weft nominal densities. Thereafter, their thermal properties were studied.
Findings
Statistical analysis demonstrated that the weave pattern significantly influences on the thermal properties of woven fabrics. Plain fabric exhibited the lowest thermal resistance and the highest thermal conductivity, and hopsack 2/2(4) weave fabric demonstrated the highest thermal resistance and the lowest thermal conductivity. Moreover, except hopsack (4) weave fabric, in all weave patterns, the length of warp float had a significant effect on the thermal characteristics of the fabrics, as increasing the warp float led to increase in the thermal resistance of the fabrics.
Originality/value
Weave pattern as one of the structural parameters of the fabric has a determinant role on the thermal properties of fabric and subsequently, the comfort of clothing produced from it. Owing to the lack of investigation in this area, this research considers the effect of weave pattern and the length of warp float in each weave pattern on the thermal properties of woven fabrics.
Details