Avinash Pawar, Ashutosh Kolte and Balkrishan Sangvikar
The purpose of this paper is to explore the significance of the internet of things (IoT) system for smart cities and deliberate on the technological aspects involved in developing…
Abstract
Purpose
The purpose of this paper is to explore the significance of the internet of things (IoT) system for smart cities and deliberate on the technological aspects involved in developing smart cities along with the framework, impact and benefits of IoT for smart cities.
Design/methodology/approach
This research is based on the review and synthesis of the papers on the broader areas of IoT for the application and implication towards the smart cities. The prime focus of this paper is to realize the IoT systems for smart city’s development and implementation of various technologies in the context of the Indian environment.
Findings
The outcome of the paper explores the highlights of the importance of the IoT system, including the technological framework, impact and benefits for smart cities. The outcome also highlights the application of IoT for smart cities. This paper provides direction regarding future degrees, potential conceivable outcomes and issues concerning the technological side of smart cities. IoT can change the lives of the people and support evolving urban areas for developing smart cities in India.
Originality/value
The paper deliberates on the novel techno-managerial approach towards the endeavour of smart cities using the IoT.
Details
Keywords
Datta Bharadwaz Yellapragada, Govinda Rao Budda and Kavya Vadavelli
The present work aims at improving the performance of the engine using optimized fuel injection strategies and operating parameters for plastic oil ethanol blends. To optimize and…
Abstract
Purpose
The present work aims at improving the performance of the engine using optimized fuel injection strategies and operating parameters for plastic oil ethanol blends. To optimize and predict the engine injection and operational parameters, response surface methodology (RSM) and artificial neural networks (ANN) are used respectively.
Design/methodology/approach
The engine operating parameters such as load, compression ratio, injection timing and the injection pressure are taken as inputs whereas brake thermal efficiency (BTHE), brake-specific fuel consumption (BSFC), carbon monoxide (CO), hydrocarbons (HC), oxides of nitrogen (NOx) and smoke emissions are treated as outputs. The experiments are designed according to the design of experiments, and optimization is carried out to find the optimum operational and injection parameters for plastic oil ethanol blends in the engine.
Findings
Optimum operational parameters of the engine when fuelled with plastic oil and ethanol blends are obtained at 8 kg of load, injection pressure of 257 bar, injection timing of 17° before top dead center and blend of 15%. The engine performance parameters obtained at optimum engine running conditions are BTHE 32.5%, BSFC 0.24 kg/kW.h, CO 0.057%, HC 10 ppm, NOx 324.13 ppm and smoke 79.1%. The values predicted from ANN are found to be more close to experimental values when compared with the values of RSM.
Originality/value
In the present work, a comparative analysis is carried out on the prediction capabilities of ANN and RSM for variable compression ratio engine fuelled with ethanol blends of plastic oil. The error of prediction for ANN is less than 5% for all the responses such as BTHE, BSFC, CO and NOx except for HC emission which is 12.8%.
Details
Keywords
Thejas Ramakrishnaiah, Prasanna Gunderi Dhananjaya, Chaturmukha Vakwadi Sainagesh, Sathish Reddy, Swaroop Kumaraswamy and Naveen Chikkahanumajja Surendranatha
This paper aims to study the various developments taking place in the field of gas sensors made from polyaniline (PANI) nanocomposites, which leads to the development of…
Abstract
Purpose
This paper aims to study the various developments taking place in the field of gas sensors made from polyaniline (PANI) nanocomposites, which leads to the development of high-performance electrical and gas sensing materials operating at room temperature.
Design/methodology/approach
PANI/ferrite nanocomposites exhibit good electrical properties with lower dielectric losses. There are numerous reports on PANI and ferrite nanomaterial-based gas sensors which have good sensing response, feasible to operate at room temperature, requires less power and cost-effective.
Findings
This paper provides an overview of electrical and gas sensing properties of PANI/ferrite nanocomposites having improved selectivity, long-term stability and other sensing performance of sensors at room temperature.
Originality/value
The main purpose of this review paper is to focus on PANI/ferrite nanocomposite-based gas sensors operating at room temperature.