Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 23 January 2007

Kees A.C. van der Linden, Stanley S.R. Kurvers, Arjen A.K. Raue and Atze A.C. Boerstra

This paper sets out to highlight several aspects of a project, aimed at developing an advanced thermal comfort guideline, based on the adaptive thermal comfort theory.

858

Abstract

Purpose

This paper sets out to highlight several aspects of a project, aimed at developing an advanced thermal comfort guideline, based on the adaptive thermal comfort theory.

Design/methodology/approach

The paper introduces the new Dutch adaptive guideline for thermal comfort. The initial method exceeding hours (TO) is discussed, as well as the more recent method of weighted temperature exceeding hours (GTO). An evaluation of the practical and theoretical shortcomings of the TO and GTO methods is discussed, as well as the rationale behind the adaptive ATG guideline. Furthermore, the results are presented of computer simulations in which the predictions of the different methods are compared. Productivity effects of the new guideline are also discussed, as well as the implications for cooling system sizing and energy efficiency.

Findings

The adaptive temperature limits (ATG) guidelines appears to be a more reliable method for the assessment of thermal comfort, in particular for passive, free‐running buildings, compared with the PMV‐based method of weighted temperature exceeding hours (GTO). Furthermore, the ATG method allows for a wider temperature range for Alpha type buildings and gives more opportunity for the development of sustainable, naturally ventilated buildings and limiting cooling energy.

Research limitations/implications

Although the new ATG method shows promising results, more research is needed. The exact distinction between Alpha and Beta is still subject to further research, as well as the question whether a certain amount of exceeding hours of the ATG limits should be accepted.

Practical implications

The ATG method is being used in The Netherlands for the assessment of thermal comfort in the design stage as well as in the assessment of the performance of buildings in use.

Originality/value

This paper discusses the first application of the adaptive thermal comfort theory in a practical guideline.

Details

Construction Innovation, vol. 7 no. 1
Type: Research Article
ISSN: 1471-4175

Keywords

Access Restricted. View access options
Article
Publication date: 1 September 2006

Bjarne W. Olesen, Olli Seppanen and Atze Boerstra

To provide input data to design and energy performance calculations of buildings and ventilation, heating, cooling and lighting systems.

2234

Abstract

Purpose

To provide input data to design and energy performance calculations of buildings and ventilation, heating, cooling and lighting systems.

Design/methodology/approach

European directive for energy performance of buildings was approved in the beginning of 2003. The transition period is 3‐6 years depending on the article. European Standardisation Organisation (CEN) has drafted several standards to help the member countries implementing the directive. One of these is the “Criteria for the indoor environment including thermal, indoor air quality (ventilation) light and noise.” The standard has been developed based on existing international standards and guidelines for the indoor environment taken into account the latest results from published research.

Findings

The standard specifies design values of indoor environment, values to be used in energy calculations, and methods how to verify the specified indoor environment in the buildings. The paper describes some of the principles used in standards, and gives examples presented in the standard. The standard covers all building types but the paper is focuses on the non‐residential buildings, numeric examples are given only for offices.

Research limitations/implications

The draft standard is under international review process during writing this paper, and subject to changes. The standard give default criteria for the indoor environmental parameters, which can be used if no national requirements are available.

Originality/value

This paper describes the indoor environmental parameters, which are important for people's health, comfort and energy consumption of buildings. This will help users to select more uniform input data for energy calculations.

Details

Facilities, vol. 24 no. 11/12
Type: Research Article
ISSN: 0263-2772

Keywords

1 – 2 of 2
Per page
102050