Search results

1 – 4 of 4
Article
Publication date: 5 March 2018

Assunta Andreozzi

The purpose of this paper is to analyze the thermal and fluid dynamic behaviors of mixed convection in air because of the interaction between a buoyancy flow and a moving plate…

Abstract

Purpose

The purpose of this paper is to analyze the thermal and fluid dynamic behaviors of mixed convection in air because of the interaction between a buoyancy flow and a moving plate induced flow in a horizontal no parallel-plates channel to investigate the effects of the minimum channel spacing, wall heat flux, moving plate velocity and converging angle.

Design/methodology/approach

The horizontal channel is made up of an upper inclined plate heated at uniform wall heat flux and a lower adiabatic moving surface (belt). The belt moves from the minimum channel spacing section to the maximum channel spacing section at a constant velocity so that its effect interferes with the buoyancy effect. The numerical analysis is accomplished by means of the finite volume method, using the commercial code Fluent.

Findings

Results in terms of heated upper plate and moving lower plate temperatures and stream function fields are presented. The paper underlines the thermal and fluid dynamic differences when natural convection or mixed convection takes place, varying minimum channel spacing, wall heat flux, moving plate velocity and converging angle.

Research limitations/implications

The hypotheses on which the present analysis is based are two-dimensional, laminar and steady state flow and constant thermo physical properties with the Boussinesq approximation. The minimum distance between the upper heated plate of the channel and its lower adiabatic moving plate is 10 and 20 mm. The moving plate velocity varies in the range 0-1 m/s; the belt moves from the right reservoir to the left one. Three values of the uniform wall heat flux are considered, 30, 60 and 120 W/m2, whereas the inclination angle of the upper plate θ is 2° and 10°.

Practical implications

Mixed convection because of moving surfaces in channels is present in many industrial applications; examples of processes include continuous casting, extrusion of plastics and other polymeric materials, bonding, annealing and tempering, cooling and/or drying of paper and textiles, chemical catalytic reactors, nuclear waste repositories, petroleum reservoirs, composite materials manufacturing and many others. The investigated configuration is used in applications such as re-heating of billets in furnaces for hot rolling process, continuous extrusion of materials and chemical vapor deposition, and it could also be used in thermal control of electronic systems.

Originality/value

This paper evaluates the thermal and velocity fields to detect the maximum temperature location and the presence of fluid recirculation. The paper is useful to thermal designers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 September 2019

Marcello Iasiello, Assunta Andreozzi, Nicola Bianco and Kambiz Vafai

Recently, the porous media theory has been successively proposed for many bioengineering applications. The purpose of this paper is to analyze if the porous media theory can be…

Abstract

Purpose

Recently, the porous media theory has been successively proposed for many bioengineering applications. The purpose of this paper is to analyze if the porous media theory can be applied to model radiofrequency (RF) cardiac ablation.

Design/methodology/approach

Blood flow, catheter and tissue are modeled. The latter is further divided into a fluid and a solid phase, and porous media equations are used to model them. The heat source term is modeled using the Laplace equation, and the finite element method is used to solve the governing equations under the appropriate boundary conditions and closure coefficients.

Findings

After validation with available literature data, results are shown for different velocities and applied voltages to understand how these parameters affect temperature fields (and necrotic regions).

Research limitations/implications

The model might require further validation with experiments under different conditions after comparisons with available literature. However, this might not be possible due to the experimental complexity.

Practical implications

The improvement in predictions from the model might help the final user, i.e. the surgeon, who uses cardiac ablation to treat arrhythmia.

Originality/value

This is the first time that the porous media theory is applied to RF cardiac ablation. The robustness of the model, in which many variables are taken into account, makes it suitable to better predict temperature fields, and damaged regions, during RF cardiac ablation treatments.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 September 2002

Assunta Andreozzi, Oronzio Manca and Vincenzo Naso

Research on natural convection in open channels is very extensive due to its role in many engineering applications such as thermal control of electronic systems. In this paper, a…

Abstract

Research on natural convection in open channels is very extensive due to its role in many engineering applications such as thermal control of electronic systems. In this paper, a parametric analysis is carried out in order to add knowledge of heat transfer in air natural convection for a symmetrically heated vertical parallel plate channel with a central auxiliary heated or adiabatic plate. The two‐dimensional steady‐state problem is solved by means of the stream function–vorticity approach and the numerical solution is carried out by means of the control volume method. Results are obtained for both a heated and unheated auxiliary plate, for a Rayleigh number in the range 103–106, for a ratio of the auxiliary plate height to the channel plate height equal to 0, 0.5 and 1 and for a ratio of the channel length to the channel gap in the range 5–15. Correlations for maximum wall temperatures and average channel Nusselt numbers are proposed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 12 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 September 2010

Assunta Andreozzi, Bernardo Buonomo and Oronzio Manca

The purpose of this paper is to evaluate the thermal and fluid dynamic behaviors of natural convection in a vertical channel‐chimney system heated symmetrically at uniform heat…

Abstract

Purpose

The purpose of this paper is to evaluate the thermal and fluid dynamic behaviors of natural convection in a vertical channel‐chimney system heated symmetrically at uniform heat flux in order to detect the different fluid motion structures inside the chimney, such as the cold inflow from the outlet section of the chimney and the reattachment due to the hot jet from the channel, for different extension and expansion ratios of the adiabatic extensions.

Design/methodology/approach

The model is constituted by two‐dimensional steady‐state fully elliptic conservation equations which are solved numerically in a composite three‐part computational domain by means of the finite‐volume method.

Findings

Stream function and temperature fields in the system are presented in order to detect the different fluid motion structures inside the chimney, for different extension and expansion ratios of the adiabatic extensions. The analysis allows to evaluate the effect of the channel aspect ratio on the thermal and fluid dynamic behaviors on a channel‐chimney system and thermal and geometrical conditions corresponding to a complete downflow. Guidelines to estimate critical conditions related to the beginning of flow separation and complete downflow are given in terms of order of magnitude of Rayleigh and Froude numbers.

Research limitations/implications

The hypotheses on which the present analysis is based are: two‐dimensional, laminar and steady‐state flow, constant thermophysical properties with the Boussinesq approximation. The investigation is carried out in the following ranges: from 100 to 100,000 for the Rayleigh number, from 5.0 to 20 for the aspect ratio, from 1.0 to 4.0 for the expansion ratio and from 1.5 to 4 for the extension ratio.

Practical implications

Thermal design of heating systems in different technical fields, such as in electronic cooling and in building ventilation and houses solar components, evaluation of heat convective coefficients and guidelines to estimate critical conditions related to the beginning of flow separation and complete downflow.

Originality/value

The paper is useful to thermal designers because of its evaluation of the thermal and velocity fields, correlation for the Nusselt number and guidelines criteria in terms of Rayleigh and Froude numbers to evaluate conditions of flow separation and complete downflow in natural convection in air for vertical channels‐chimney systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 20 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 4 of 4