Search results
1 – 2 of 2Chang Fei Yee, Asral Bahari Jambek and Azremi Abdullah Al-Hadi
This paper aims to analyze the impact of non-perfect reference plane on the integrity of microstrip differential signals at multi-gigabit transmission on a printed circuit board…
Abstract
Purpose
This paper aims to analyze the impact of non-perfect reference plane on the integrity of microstrip differential signals at multi-gigabit transmission on a printed circuit board (PCB). The effects of non-perfect reference contributed by signal crossing over split plane such as impedance discontinuity and crosstalk are investigated by performing analysis in two phases.
Design/methodology/approach
The first phase involves three-dimensional electromagnetic modeling extraction using Keysight EMPro software. Meanwhile, the second phase involves the import of model extracted from EMPro into simulation using Keysight Advanced Design System that covers insertion loss, return loss, crosstalk, time domain reflectometry and eye diagram.
Findings
A non-perfect reference plane has a negative impact on signal reflection, attenuation and crosstalk. The analysis results are presented and discussed in detail in the later section of this paper.
Originality/value
The work that studied the impact of the width and the amount of gaps due to crossing of split planes being experienced on the signal integrity was performed by other researchers. Meanwhile, this paper focused on the impact of length and depth of the gap on signal integrity. These research papers serve as a reference guide for high-speed PCB layout design.
Details
Keywords
Yijun Teh, Asral Bahari Jambek and Uda Hashim
This paper aims to discuss a nanoscale biosensor and its signal analysis algorithms.
Abstract
Purpose
This paper aims to discuss a nanoscale biosensor and its signal analysis algorithms.
Design/methodology/approach
In this work, five nanoscale biosensors are reviewed, namely, silicon nanowire field-effect-transistor biosensors, polysilicon nanogap capacitive biosensors, nanotube amperometric biosensors, gold nanoparticle-based electrochemical biosensors and quantum dot-based electrochemical biosensors.
Findings
Each biosensor produces a different output signal depending on its electrical characteristics. Five signal analysers are studied, with most of the existing signal analyser analyses based on the amplitude of the signal. Based on the analysis, auto-threshold peak detection is proposed for further work.
Originality/value
Suitability of the signal processing algorithm to be applied to nano-biosensors was reported.
Details