Search results

1 – 2 of 2
Article
Publication date: 28 April 2022

Aslı Boru İpek

Coronavirus disease (Covid-19) has created uncertainty in all countries around the world, resulting in enormous human suffering and global recession. Because the economic impact…

Abstract

Purpose

Coronavirus disease (Covid-19) has created uncertainty in all countries around the world, resulting in enormous human suffering and global recession. Because the economic impact of this pandemic is still unknown, it would be intriguing to study the incorporation of the Covid-19 period into stock price prediction. The goal of this study is to use an improved extreme learning machine (ELM), whose parameters are optimized by four meta-heuristics: harmony search (HS), social spider algorithm (SSA), artificial bee colony algorithm (ABCA) and particle swarm optimization (PSO) for stock price prediction.

Design/methodology/approach

In this study, the activation functions and hidden layer neurons of the ELM were optimized using four different meta-heuristics. The proposed method is tested in five sectors. Analysis of variance (ANOVA) and Duncan's multiple range test were used to compare the prediction methods. First, ANOVA was applied to the test data for verification and validation of the proposed methods. Duncan's multiple range test was used to identify a suitable method based on the ANOVA results.

Findings

The main finding of this study is that the hybrid methodology can improve the prediction accuracy during the pre and post Covid-19 period for stock price prediction. The mean absolute percent error value of each method showed that the prediction errors of the proposed methods were all under 0.13106 in the worst case, which appears to be a remarkable outcome for such a difficult prediction task.

Originality/value

The novelty of this study is the use of four hybrid ELM methods to evaluate the automotive, technology, food, construction and energy sectors during the pre and post Covid-19 period. Additionally, an appropriate method was determined for each sector.

Article
Publication date: 14 May 2024

Ayşe Tuğba Dosdoğru, Yeliz Buruk Sahin, Mustafa Göçken and Aslı Boru İpek

This study aims to optimize the levels of factors for a green supply chain (GSC) while concurrently gaining valuable insights into the dynamic interrelationships among several…

Abstract

Purpose

This study aims to optimize the levels of factors for a green supply chain (GSC) while concurrently gaining valuable insights into the dynamic interrelationships among several factors, leading to reductions in CO2 emissions and the maximization of the average service level, thereby enhancing overall supply chain performance.

Design/methodology/approach

Response surface methodology (RSM) is employed as a technique for multiple response optimization. This study uses a supply chain simulation model that includes decision variables related to the level of inventory control parameters and vehicle capacity. The desirability approach is adopted to achieve optimization objectives by focusing on minimizing CO2 emissions and maximizing service levels while simultaneously determining the optimum levels of considered decision variables.

Findings

The high R2 values of 97.38% for CO2 and 97.28% for service level, along with adjusted R2 values reasonably close to predicted values, affirm the models' capability to predict responses accurately. Key significant model terms for CO2 encompassed reorder point, order up to quantity, vehicle capacity, and their interaction effects, while service level is notably influenced by reorder point, order up to quantity, and their interaction effects. The study successfully achieved a high level of desirability value of %99.1 and the validated performance levels confirmed that the results fall within the prediction interval.

Originality/value

This study introduces a metamodel framework designed to optimize various design parameters for a GSC combining discrete event simulation (DES) and RSM in the form of a simulation optimization model. In contrast to the literature, the current study offers an exhaustive and in-depth analysis of the structural elements of the supply chain, particularly the inventory control parameters and vehicle capacity, which are crucial for comprehending its performance and environmental impact.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 2 of 2