Akhtar Alam, M. Sultan Bhat, Hakim Farooq, Bashir Ahmad, Shabir Ahmad and Ashaq H. Sheikh
Risk assessment is imperative for disaster risk reduction. The risk is rooted to various physical, social, economic, demographic and environmental factors that determine the…
Abstract
Purpose
Risk assessment is imperative for disaster risk reduction. The risk is rooted to various physical, social, economic, demographic and environmental factors that determine the probable magnitude of loss during an extreme event. By way of bringing a conceptual model into practice, this paper aims to examine the flood risk of the Srinagar city.
Design/methodology/approach
The “risk triangle” model has been adopted in the present investigation evaluating parameters, reflective of hazard (intensity), exposure (spatial) and vulnerability (sensitivity) using Landsat-8 operational land imager scene (10 September 2014), global positioning system, Cartosat-1 digital elevation model and socioeconomic and demographic data (Census of India, 2011). The authors characterise flood hazard intensity on the basis of variability in water depth during a recent event (September 2014 Kashmir flood); spatial exposure as a function of terrain elevation; and socioeconomic structure and demographic composition of each municipal ward of the city as a determinant factor of the vulnerability. Statistical evaluation and geographic information system-based systematic integration of all the multi-resolution data layers helped to develop composite flood risk score of each ward of the city.
Findings
Principal deliverable of this study is flood risk map of the Srinagar city. The results reveal that approximately 46 per cent of the city comprising 33 municipal wards is at high risk, while rest of the area, i.e. 17 and 37 per cent, exhibit moderate and low levels of risk, constituting 23 and 12 municipal wards, respectively. It is very likely that the municipal wards expressing high risk may witness comparatively more damage (impact) during any future flood event. Thus, there is a need of planned interventions (structural and non-structural) to minimise the emergent risk.
Originality/value
Very rare attempts have been made to bring theoretical models of disaster research in practice; this is mainly because of the complexities associated with the data (selection, availability and subjectivity), methodology (integration, quantification) and resolution (spatial scales). In this direction, this work is expected to have considerable impact, as it provides a clear foundation to overcome such issues for the studies aiming at disaster risk assessment. Furthermore, using varied primary and secondary data, this paper demonstrates the relative (municipal wards) flood risk status of the Srinagar city, which is one of the key aspects for flood hazard mitigation.
Details
Keywords
Kaleem Ahmad Najar, N.A. Sheikh, Mohammad Mursaleen Butt and M.A. Shah
The purpose of this study is to investigate the mechanical and tribological properties of the synthetic diamond coatings deposited on WC-Co cutting tools for their prospective…
Abstract
Purpose
The purpose of this study is to investigate the mechanical and tribological properties of the synthetic diamond coatings deposited on WC-Co cutting tools for their prospective applications in mechanical industry. In this work, the concept of nanocrystalline diamond, microcrystalline diamond and multilayer-diamond coating systems were proposed and deposited on WC-Co substrates with the top-layer nanocrystallinity, optimum thickness and interfacial adhesion strength for load-bearing tribological and machining applications. Also, the overall mechanical and tribological properties of all synthetic diamond coatings were compared for the purpose of selecting a suitable type of protective layer used on the surfaces of WC-Co cutting tools or mechanical dies.
Design/methodology/approach
Smooth and adhesive single layered and multilayered synthetic deposited on chemically etched cemented tungsten carbide (WC-Co) substrates using predetermined process parameters in hot filament chemical vapor deposition (HFCVD) method. A comparison has been documented between diamond coatings having different nature and architecture for the purpose of studying their mechanical and tribological characteristics. The friction characteristics were studied experimentally using ball-on-disc type linear reciprocating micro-tribometer under the influence of varying load conditions and within dry sliding conditions. Nanoindentation tests were conducted on each diamond coating using Berkovich nanoindenter for the measurement of their hardness and elastic modulus values. Also, the wear characteristics of all sliding bodies were studied under varying load conditions using cumulative weight loss and density method.
Findings
Depositing any type of diamond coating on the cemented carbide tool insert increases its all mechanical and tribological characteristics. When using boron-doping onto the top-layer surface of diamond coatings decrease slightly their mechanical properties but increases the tribological characteristics. Present analysis reveals that friction coefficient of all diamond-coated WC-Co substrates decreases with the increase of normal load. Therefore, maintaining an appropriate level of normal load, sliding time, sliding distance, atmospheric conditions and type of diamond coating, the friction coefficient may be kept to some lower value to improve mechanical processes.
Originality/value
As the single layered synthetic diamond coatings have not given the full requirements of mechanical and tribological properties when deposited on cutting tools. Therefore, the multilayered diamond coatings were proposed and developed to enhance the interfacial integrity of the nanocrystalline and microcrystalline layers (by eliminating the sharp interface) as well as increasing the hardness of tungsten carbide substrate. However, when using boron doping onto the top-layer surface of diamond, coatings decreases slightly their mechanical characteristics but also decreases the value of friction coefficient.