Search results

1 – 1 of 1
Per page
102050
Citations:
Loading...
Available. Open Access. Open Access
Article
Publication date: 19 June 2024

Armindo Lobo, Paulo Sampaio and Paulo Novais

This study proposes a machine learning framework to predict customer complaints from production line tests in an automotive company's lot-release process, enhancing Quality 4.0…

796

Abstract

Purpose

This study proposes a machine learning framework to predict customer complaints from production line tests in an automotive company's lot-release process, enhancing Quality 4.0. It aims to design and implement the framework, compare different machine learning (ML) models and evaluate a non-sampling threshold-moving approach for adjusting prediction capabilities based on product requirements.

Design/methodology/approach

This study applies the Cross-Industry Standard Process for Data Mining (CRISP-DM) and four ML models to predict customer complaints from automotive production tests. It employs cost-sensitive and threshold-moving techniques to address data imbalance, with the F1-Score and Matthews correlation coefficient assessing model performance.

Findings

The framework effectively predicts customer complaint-related tests. XGBoost outperformed the other models with an F1-Score of 72.4% and a Matthews correlation coefficient of 75%. It improves the lot-release process and cost efficiency over heuristic methods.

Practical implications

The framework has been tested on real-world data and shows promising results in improving lot-release decisions and reducing complaints and costs. It enables companies to adjust predictive models by changing only the threshold, eliminating the need for retraining.

Originality/value

To the best of our knowledge, there is limited literature on using ML to predict customer complaints for the lot-release process in an automotive company. Our proposed framework integrates ML with a non-sampling approach, demonstrating its effectiveness in predicting complaints and reducing costs, fostering Quality 4.0.

Details

The TQM Journal, vol. 36 no. 9
Type: Research Article
ISSN: 1754-2731

Keywords

1 – 1 of 1
Per page
102050