Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 14 January 2014

Fred L. Amorim, Armin Lohrengel, Volkmar Neubert, Camila F. Higa and Tiago Czelusniak

This work is focused on the investigation of direct production of electrical discharge machining (EDM) electrodes through the selective laser sintering (SLS) technique using a new…

672

Abstract

Purpose

This work is focused on the investigation of direct production of electrical discharge machining (EDM) electrodes through the selective laser sintering (SLS) technique using a new metal-matrix composite material made of molybdenum and a copper-nickel alloy (Mo-CuNi). The influence and optimization of the main SLS parameters on the densification behavior and porosity is experimentally studied. Additionally, EDM experiments are performed to evaluate the electrodes performance under different machining conditions. The paper aims to discuss these issues.

Design/methodology/approach

The new EDM electrode material used was a powder system composed of Mo and pre-alloyed CuNi. A systematic experimental methodology was designed to evaluate the effects of layer thickness, laser scan speed and hatch distance. The densification behavior, porosity and surface morphology of the samples were analyzed through microstructural and surface analysis. EDM experiments were conducted under three different regimes in order to observe the electrodes behavior and performance. The results were compared with copper powder electrodes manufactured by SLS and solid copper electrodes EDMachined under the same conditions.

Findings

The experimental results showed that the direct SLS manufacturing of composite electrodes is feasible and an adequate combination of parameters can produce parts with good quality. The laser scan speed has a great effect on the densification behavior of the samples, while the effect of hatch distance on the porosity is more visible when the overlapping degree is considered. The overlapping also had a significant effect on the surface morphology. The EDM results showed that the Mo-CuNi electrodes had superior performance to the copper powder electrodes made by SLS for all the EDM regimes applied, but inferior to those achieved with solid copper electrodes.

Originality/value

Significant results on the direct SLS manufacturing of a new material which has a great technological potential to be used as an EDM electrode material are presented. Valuable guidelines are given in regard to the SLS optimization of Mo-CuNi material and its performance as an EDM electrode. This work also provides a systematic methodology designed to be applied to the SLS process to produce EDM electrodes.

Details

Rapid Prototyping Journal, vol. 20 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Access Restricted. View access options
Article
Publication date: 30 September 2013

Fred Lacerda Amorim, Armin Lohrengel, Guenter Schaefer and Tiago Czelusniak

This work aims to investigate the direct production of electrical discharge machining (EDM) electrodes by means of the selective laser sintering (SLS) technique using a new…

422

Abstract

Purpose

This work aims to investigate the direct production of electrical discharge machining (EDM) electrodes by means of the selective laser sintering (SLS) technique using a new non-conventional metal-matrix composite material (TiB2-CuNi). The influence and optimization of the main SLS parameters on the densification behavior and porosity is experimentally studied. EDM experiments are also performed to evaluate the electrodes performance.

Design/methodology/approach

The new EDM electrode material used was a powder system composed of TiB2 and CuNi. Making use of a designed systematic experimental methodology, the effects of layer thickness, laser scan speed and scan line spacing were optimized, where aspects such as densification behavior, porosity and surface morphology of the samples were analyzed through microstructural and surface analysis. EDM experiments were conducted under three different regimes in order to observe the electrodes behavior and performance. The results were compared with copper powder electrodes manufactured by SLS and EDMachined under the same conditions.

Findings

The experimental results showed that the direct SLS manufacturing of composite electrodes is feasible and promising. The laser scan speed has a high effect on the densification behavior of the samples, while the effect of scan line spacing on the porosity is more visible when the overlapping degree is considered. Surface morphology was not affected by the scan line spacing, whereas balling phenomenon was reported, regardless of the scan line spacing. The EDM results showed that the TiB2-CuNi electrodes had a much superior performance than the copper powder electrodes made by SLS, regardless of the EDM regime applied.

Research limitations/implications

Generally, the machine tool itself promotes some restrictions to the SLS process optimization. It is normally attributed to the characteristics of the laser type and the amount of energy that can be delivered to the powder bed. The present investigation could not cover all the optimization potential involved with the studied material due to limitations of the SLS machine tool used.

Originality/value

Significant results on the direct SLS manufacturing of a new non-conventional composite material, which has a great technological potential to be used as an EDM electrode material, are presented. Valuable guidelines are given in regard to the SLS optimization of TiB2-CuNi material and its performance as an EDM electrode. This work also provides a systematic methodology designed to be applied to the SLS process to produce EDM electrodes.

Details

Rapid Prototyping Journal, vol. 19 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 2 of 2
Per page
102050