Search results
1 – 6 of 6Arkadiusz Dabrowski, Przemyslaw Rydygier, Mateusz Czok and Leszek Golonka
The purpose of this study was to design, fabricate and test devices based on transformers integrated with low-temperature co-fired ceramic (LTCC) modules with isolation between…
Abstract
Purpose
The purpose of this study was to design, fabricate and test devices based on transformers integrated with low-temperature co-fired ceramic (LTCC) modules with isolation between primary and secondary windings at the level between 6 and 12 kV.
Design/methodology/approach
Insulating properties of the LTCC were examined. Dielectric strength and volume resistivity were determined for common LTCC tapes: 951 (DuPont), 41020, 41060 (ESL), A6M (Ferro) and SK47 (KEKO). According to the determined properties, three different devices were designed, fabricated and tested: a compact DC/DC converter, a galvanic separator for serial digital bus and a transformer for high-voltage generator.
Findings
Breakdown field intensity higher than 40 kV/mm was obtained for the test samples set, whereas the best breakdown field intensity of about 90 kV/mm was obtained for 951 tape. The materials 41020 and 951 exhibited the highest volume resistivity. Fabricated devices exhibited safe operation up to a potential difference of 10 kV, limited by minimum clearance. Long-term stability was assured by over 20 kV strength of inner dielectric.
Practical implications
This paper contains description of three devices made in the LTCC technology for application in systems with high-voltage isolation requirement, for example, for power or railway power networks.
Originality/value
The results show that LTCC is a suitable material for fabrication of high-voltage devices with integrated passives. Technology and properties of three examples of such devices are described, demonstrating the ability of the LTCC technology for application in reliable high-voltage devices and systems.
Details
Keywords
Tomasz Matusiak, Arkadiusz Dabrowski and Leszek Golonka
The purpose of this paper is to present the properties of thick-film resistors made of novel pastes prepared from glass and graphite.
Abstract
Purpose
The purpose of this paper is to present the properties of thick-film resistors made of novel pastes prepared from glass and graphite.
Design/methodology/approach
Graphite-based resistors were made of thick-film pastes with different graphite-to-glass mass fraction were prepared and examined. Sheet resistance, temperature coefficient of resistance, impact of humidity and short-term overload were investigated. The properties of the layers fired in atmospheres of air at 550°C and nitrogen at 875°C were compared.
Findings
Graphite-based resistors with various graphite-to-glass ratios made possible to obtain a wide range of sheet resistance from single O/square to few kO/square. These values were dependent on firing atmosphere, paste composition and the number of screen-printed layers. The samples made of paste with 1:1 graphite-to-glass ratio exhibited the temperature coefficient of resistance of about −1,000 ppm/°C, almost independently on the firing atmosphere and presence of a top coating. The resistors fired in the air after coating with overglaze, exhibited significantly lower sheet resistance, reduced impact of humidity and improved power capabilities.
Originality/value
In this paper, graphite-based resistors for applications in typical high-temperature cermet thick-film circuits were presented, whereas typical graphite-based resistors were fabricated in polymer thick-film technology. Owing to very low cost of the graphite, the material is suitable for low-power passive circuits, where components are not subjected into high temperature, above the typical temperature of operation of standard electronic components.
Details
Keywords
Beata Barteczka, Piotr Slobodzian, Arkadiusz Dabrowski and Leszek Golonka
The purpose of this paper was to investigate the influence of non-uniform temperature distribution inside a box furnace during the firing process on electrical properties of the…
Abstract
Purpose
The purpose of this paper was to investigate the influence of non-uniform temperature distribution inside a box furnace during the firing process on electrical properties of the low-temperature co-fired ceramic (LTCC) materials used in radio frequency (RF)/microwave applications.
Design/methodology/approach
The authors studied the change in dielectric constant of two popular LTCC materials (DP 951 and DP 9K7) depending on the position of their samples inside the box furnace. Before firing of the samples, temperature distribution inside the box furnace was determined. The dielectric constant was measured using the method of two microstrip lines.
Findings
The findings showed that non-uniform temperature distribution with spatial difference of 6°C can result in 3-4 per cent change of the dielectric constant. It was also found that dielectric constant of the two tested materials shows disparate behavior under the same temperature distribution inside the box furnace.
Practical implications
The dielectric constant of the substrate materials is crucial for RF/microwave applications. Therefore, it was shown that 3-4 per cent deviation in dielectric constant can result in considerable detuning of microwave circuits and antennas.
Originality/value
To the best of the authors’ knowledge, the quantitative description of the impact of temperature distribution inside a box furnace on electrical properties of the LTCC materials has never been published in the open literature. The findings should be helpful when optimizing production process for high yield of reliable LTCC components like filters, baluns and chip antennas.
Details
Keywords
Arkadiusz Dabrowski, Karl Elkjaer, Louise Borregaard, Tomasz Zawada and Leszek Golonka
The purpose of this paper is to develop the device made of low temperature co-fired ceramics (LTCC) and lead zirconate titanate (PZT) by co-firing both materials. In the paper…
Abstract
Purpose
The purpose of this paper is to develop the device made of low temperature co-fired ceramics (LTCC) and lead zirconate titanate (PZT) by co-firing both materials. In the paper, the technology and properties of a miniature uniaxial ceramic accelerometer are presented.
Design/methodology/approach
Finite element method (FEM) is applied to predict properties of the sensor vs main dimensions of the sensor. The LTCC process is applied during manufacturing of the device. All the advantages of the technology are taken into account during designing three-dimensional structure of the sensor. The sensitivity and resonant frequency of the accelerometer are measured. Real material parameters of PZT are estimated according to measurement results and FEM simulations.
Findings
The ceramic sensor integrated with SMD package with outer dimensions of 5 × 5 × 5 mm3 is manufactured. The accelerometer exhibits sensitivity of 0.75 pC/g measured at 100 Hz. The resonant frequency is equal to about 2 kHz. Useful frequency range is limited by 3 dB sensitivity change at about 1 kHz.
Research limitations/implications
Sensitivity of the device is limited by interaction between LTCC and PZT materials during co-firing process. The estimated d parameters are ten times worse comparing to bulk Pz27 material. Further research on materials compatibility should be carried out.
Practical implications
The sensor can be easily integrated into various devices made of standard electronic printed circuit boards (PCBs). Applied method of direct integration of piezoelectric transducers with LTCC material enables manufacturing of complex ceramic systems with built-in accelerometer in the substrate.
Originality/value
The accelerometer is a sensor and a package simultaneously. The miniature ceramic device is compatible with surface mounting technology; hence, it can be used directly on PCBs for vibration monitoring inside electronic devices and systems.
Details
Keywords
Gamification seems to solve all our problems in education. Students become engaged and motivated – they learn so much more than in the traditional system. Conducting lessons…
Abstract
Purpose
Gamification seems to solve all our problems in education. Students become engaged and motivated – they learn so much more than in the traditional system. Conducting lessons becomes a pleasure, an adventure, a catharsis! While checking attendance, participation, quizzes, tasks, assignments, projects, missions, and quests on a daily basis is a bliss. Unfortunately, that is not true. That is only a dream or part of the advertising campaign of yet another so-called professional or seasoned gamifier. Preparing, organising, and designing gamified courses are not a stroll in a park. Every teacher must forsake leisure and family time alike unless they have ample support from colleagues, administration, and IT department. The purpose of this paper is to present the author’s approach to gamification and share some insight into the author’s experience from designing gamified courses and workshops since 2009.
Design/methodology/approach
This paper concentrates on hands-on experience, mistakes, and solutions in order to approach a major issue: should we introduce gamification in education at all?
Findings
In reality, gamification can be the root of all evil if done too hastily, too cheerfully, and without prior understanding of students’ needs, school facilities, and our own abilities. Gamifying a classroom (or a whole school) is a massive project which should be managed with all risks, weaknesses, and threats possible to imagine. That is why, it is advisable to know what to expect, what to fear, and what to avoid in order to choose the path of righteousness, to master the trade, and to reach everlasting glory. When discussing gamification in education, we must face reality, we need to understand what gamification can provide, but also what it can devour. Educational milieu is too sensitive and our students are too precious to apply unverified solutions without the adequate preparations.
Originality/value
The author offers a few answers to the question as well as a handful of suggestions towards the successful introduction of gamification in education.
Details