Wuyong Qian, Hao Zhang, Aodi Sui and Yuhong Wang
The purpose of this study is to make a prediction of China's energy consumption structure from the perspective of compositional data and construct a novel grey model for…
Abstract
Purpose
The purpose of this study is to make a prediction of China's energy consumption structure from the perspective of compositional data and construct a novel grey model for forecasting compositional data.
Design/methodology/approach
Due to the existing grey prediction model based on compositional data cannot effectively excavate the evolution law of correlation dimension sequence of compositional data. Thus, the adaptive discrete grey prediction model with innovation term based on compositional data is proposed to forecast the integral structure of China's energy consumption. The prediction results from the new model are then compared with three existing approaches and the comparison results indicate that the proposed model generally outperforms existing methods. A further prediction of China's energy consumption structure is conducted into a future horizon from 2021 to 2035 by using the model.
Findings
China's energy structure will change significantly in the medium and long term and China's energy consumption structure can reach the long-term goal. Besides, the proposed model can better mine and predict the development trend of single time series after the transformation of compositional data.
Originality/value
The paper considers the dynamic change of grey action quantity, the characteristics of compositional data and the impact of new information about the system itself on the current system development trend and proposes a novel adaptive discrete grey prediction model with innovation term based on compositional data, which fills the gap in previous studies.