Chunjiang Yang, Yashuo Chen and Aobo Chen
Using the theoretical lens of sensemaking, this paper aims to investigate the relationship between on-the-job shocks, as experienced by the employees and intention to stay (IS) by…
Abstract
Purpose
Using the theoretical lens of sensemaking, this paper aims to investigate the relationship between on-the-job shocks, as experienced by the employees and intention to stay (IS) by shedding light on the mediating role of organizational embeddedness (OE) and the moderating role of commitment human resource practices (CHRP).
Design/methodology/approach
The study used a time-lagged research design, collecting data from 304 employees from 48 teams in China to conduct multilevel structural equation modeling to test hypotheses.
Findings
This study found that employees who suffer on-the-job shocks tend to decrease their IS in organizations via OE. However, CHRP did not bound the main effect of on-the-job shocks on OE.
Practical implications
Given the increasingly dynamic business environment, employees constantly encounter shocks in the workplace. Organizations or leaders should be aware of the on-the-job shocks in harming employee retention.
Originality/value
The research highlights workplace events’ significance in investigating employees’ retention and specifically offers glimpses into the mechanisms by which on-the-job shocks manifest themselves in employees’ IS.
Details
Keywords
Qing Li, Chulin Li, Dongdong Dong, Huimin Han, Guangwu Sun, Xiaona Chen, Hongyan Hu, Wenfeng Hu, Hong Xie and Yanmei Li
This study aims to evaluate how the structure of medical compression stockings, including three compression levels and five cross-sections from the ankle to the thigh part, will…
Abstract
Purpose
This study aims to evaluate how the structure of medical compression stockings, including three compression levels and five cross-sections from the ankle to the thigh part, will be changed after washing in different conditions and further investigate the effect of the washing parameters on the medical compression stockings.
Design/methodology/approach
By washing medical compression stockings in different conditions and measuring the structures (including the density, the girth, the transversal and lengthwise dimension, the weight per unit area and the thickness) of medical compression stockings from the knee to the thigh part.
Findings
It was concluded that the density, the weight per unit and the thickness increase and the girth, the transversal and lengthwise dimension, the weight per unit and the thickness decrease. The change degree of Class one and Class two is greater than Class 3. Moreover, the washing temperature is the most significant factor affecting all the structures of medical compression stockings. Meanwhile, the mechanical actions of the washing machine, like drum speed and washing time, also influence different medical compression stockings structures to different degrees.
Research limitations/implications
The washing parameter not only includes the temperature and washing cycles but also has other factors, such as the drum speed and washing time. In addition, different kinds of factors will be influenced by each other.
Originality/value
This study can provide consumers advices on the washing of medical compression stockings, and attribute to the optimization of materials and structures to maintain its properties for manufacturers.
Details
Keywords
Guizhi Lyu, Peng Wang, Guohong Li, Feng Lu and Shenglong Dai
The purpose of this paper is to present a wall-climbing robot platform for heavy-load with negative pressure adsorption, which could be equipped with a six-degree of freedom (DOF…
Abstract
Purpose
The purpose of this paper is to present a wall-climbing robot platform for heavy-load with negative pressure adsorption, which could be equipped with a six-degree of freedom (DOF) collaborative robot (Cobot) and detection device for inspecting the overwater part of concrete bridge towers/piers for large bridges.
Design/methodology/approach
By analyzing the shortcomings of existing wall-climbing robots in detecting concrete structures, a wall-climbing mobile manipulator (WCMM), which could be compatible with various detection devices, is proposed for detecting the concrete towers/piers of the Hong Kong-Zhuhai-Macao Bridge. The factors affecting the load capacity are obtained by analyzing the antislip and antioverturning conditions of the wall-climbing robot platform on the wall surface. Design strategies for each part of the structure of the wall-climbing robot are provided based on the influencing factors. By deriving the equivalent adsorption force equation, analyzed the influencing factors of equivalent adsorption force and provided schemes that could enhance the load capacity of the wall-climbing robot.
Findings
The adsorption test verifies the maximum negative pressure that the fan module could provide to the adsorption chamber. The load capacity test verifies it is feasible to achieve the expected bearing requirements of the wall-climbing robot. The motion tests prove that the developed climbing robot vehicle could move freely on the surface of the concrete structure after being equipped with a six-DOF Cobot.
Practical implications
The development of the heavy-load wall-climbing robot enables the Cobot to be installed and equipped on the wall-climbing robot, forming the WCMM, making them compatible with carrying various devices and expanding the application of the wall-climbing robot.
Originality/value
A heavy-load wall-climbing robot using negative pressure adsorption has been developed. The wall-climbing robot platform could carry a six-DOF Cobot, making it compatible with various detection devices for the inspection of concrete structures of large bridges. The WCMM could be expanded to detect the concretes with similar structures. The research and development process of the heavy-load wall-climbing robot could inspire the design of other negative-pressure wall-climbing robots.
Details
Keywords
Lin Liu, Hongyu Su, Xue Li, Yanan Wang, Qiang Zhang and Jianhua Qian
This paper aims to evaluate the inhibitive effect and adsorption behavior of the 2-amino-5-thiol-1,3,4-thiadiazole vanillin (A) on copper in 3 per cent NaCl solution.
Abstract
Purpose
This paper aims to evaluate the inhibitive effect and adsorption behavior of the 2-amino-5-thiol-1,3,4-thiadiazole vanillin (A) on copper in 3 per cent NaCl solution.
Design/methodology/approach
A thiazole Schiff bases were synthesized, named, 2-amino-5-thiol-1,3,4-thiadiazole vanillin (A), which was fabricated respectively on copper surface by the molecular self-assembled. Evaluation was carried out by electrochemical measurement and surface analysis techniques. Measurement of static friction coefficient scanning electron microscopy and Contact angle analysis were applied, and it is finally confirmed the existence of the adsorbed film. The inhibitive mechanism of A was evaluated by means of quantitative calculation and molecular dynamics simulation.
Findings
The electrochemical measurement indicated that the self-assembled molecular film can effectively inhibit the corrosion of copper sheet, when the concentration was 15 mmol⋅L−1 and the assembly time was 6 h, the corrosion inhibition effect was the best, reaching as high as 97.5 per cent. Scanning electron microscopy results showed that the Schiff base compound forms a protective film on the surface of the copper, which effectively blocks the transfer of corrosion particles to the metal substrate, thereby inhibiting the occurrence of corrosion. Adsorption behavior of A followed the Langmuir’s adsorption isotherm and attributed to mixed-type adsorption. The results of Quantitative calculation and molecular dynamics simulation showed that A was adsorbed on Cu (111) surface in parallel.
Research limitations/implications
In this study, the corrosion inhibition properties of Schiff base film were investigated by combining theory with experiment. Theoretical calculation is helpful to guide the synthesis of efficient and environmentally friendly corrosion inhibitors.
Practical implications
The damage caused by metal corrosion is great. The self-assembled Schiff base membrane synthesized in this paper is simple and compact, and the corrosion inhibition efficiency of copper in 3 per cent NaCl solution is 97.5 per cent.
Social implications
Inhibition of metal corrosion can better save energy and reduce economic losses.
Originality/value
The synthesized Schiff base was prepared on the copper surface by the molecular self-assembled. The Schiff base membrane has a good corrosion inhibition effect on copper in 3 per cent NaCl solution, and the corrosion inhibition efficiency is up to 97.5 per cent.