Search results

1 – 1 of 1
Article
Publication date: 29 May 2020

Anton V. Ubaychin, Tilekbek Abdirasul Uulu and Grigory Zhuk

This paper aims to describe a new microwave radiometer designed for sensing natural mediums to solve various applied scientific problems. The research findings enable to make…

Abstract

Purpose

This paper aims to describe a new microwave radiometer designed for sensing natural mediums to solve various applied scientific problems. The research findings enable to make assertions about high efficiency of the described microwave radiometer being a part of mobile sensor systems with self-contained power supplies.

Design/methodology/approach

A new microwave radiometer is based on the modification of the null method. Modification of the null method has been implemented by using two reference noise generators. The first reference noise generator is passive and its implementation is based on the matched load. A low-noise amplifier is used as the second reference noise generator. The use of the low-noise amplifier as the reference noise generator is based on the noise wave generation effect at its input whereby the waves form low-temperature noise.

Findings

The use of the low-noise amplifier as the reference noise generator in the modified microwave radiometer has made it possible to simplify the device design at the system level while reducing the weight and power consumption and increasing sensitivity.

Originality/value

The novelty of the modified radiometer lies in the modification of the null method and the removal of high-temperature reference noise generators based on avalanche transit-time diodes. Further, the novelty lies in the invariance of measurement results toward changes in the receiver’s own noise and transmission factor while the design of the device has been simplified.

Details

Sensor Review, vol. 40 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 1 of 1