Peter Gangl, Stefan Köthe, Christiane Mellak, Alessio Cesarano and Annette Mütze
This paper aims to deal with the design optimization of a synchronous reluctance machine to be used in an X-ray tube, where the goal is to maximize the torque while keeping low…
Abstract
Purpose
This paper aims to deal with the design optimization of a synchronous reluctance machine to be used in an X-ray tube, where the goal is to maximize the torque while keeping low the amount of material used, by means of gradient-based free-form shape optimization.
Design/methodology/approach
The presented approach is based on the mathematical concept of shape derivatives and allows to obtain new motor designs without the need to introduce a geometric parametrization. This paper presents an extension of a standard gradient-based free-form shape optimization algorithm to the case of multiple objective functions by determining updates, which represent a descent of all involved criteria. Moreover, this paper illustrates a way to obtain an approximate Pareto front.
Findings
The presented method allows to obtain optimal designs of arbitrary, non-parametric shape with very low computational cost. This paper validates the results by comparing them to a parametric geometry optimization in JMAG by means of a stochastic optimization algorithm. While the obtained designs are of similar shape, the computational time used by the gradient-based algorithm is in the order of minutes, compared to several hours taken by the stochastic optimization algorithm.
Originality/value
This paper applies the presented gradient-based multi-objective optimization algorithm in the context of free-form shape optimization using the mathematical concept of shape derivatives. The authors obtain a set of Pareto-optimal designs, each of which is a shape that is not represented by a fixed set of parameters. To the best of the authors’ knowledge, this approach to multi-objective free-form shape optimization is novel in the context of electric machines.
Details
Keywords
Walter Holweger, Marcus Wolf, Frank Walther, Werner Trojahn, Annette Mütze, Jan Kunzmann, Jürgen Schreiber, Joachim Mayer and Manuela Reichelt
The purpose of this paper is to show how controlled exposure of electromagnetic fields toward bearing steel vulnerates the microstructure. The ability of Barkhausen Noise signal…
Abstract
Purpose
The purpose of this paper is to show how controlled exposure of electromagnetic fields toward bearing steel vulnerates the microstructure. The ability of Barkhausen Noise signal processing is used for detecting phenomena such as dislocation and subgrain formation processes as the beginning of later failures.
Design/methodology/approach
A Barkhausen noise signal measurement equipment is used for detecting subsurface distress of 100Cr6 as a function of the applied electromagnetic and mechanical stress. Barkhausen noise signal is mathematically processed by use of fractal dimension analysis.
Findings
The paper cleary reveals significant impact of electromagnetic field in junction with mechanical loading. Electromagnetic impact depends on the magnitude of the field.
Research limitations/implications
Research limitations are given by the fact that in real field applications, e.g. wind power plants, bearings are exposed by multiple influences and the methodology is not applicable to those conditions.
Practical implications
The methodology can be applied to real field applications in condition monitoring systems. Up to now, no reasonable on‐line measurement is in use determining sub surface fatigue phenomena. The paper hence, reveals the possibility to raise condition monitoring into a new perspective.
Originality/value
The use of Barkhausen noise signal processing, as presented here, is original with respect to real field applications, such as wind power plants with a high demand in condition monitoring, especially off‐shore plants.