Edwin H.W. Chan, W.S. Wong, Ann A.C. Cheung and Grace K.L. Lee
The purpose of this research is to review the regulatory framework for natural ventilation design affecting the health of residents, to identify the relationship between the main…
Abstract
Purpose
The purpose of this research is to review the regulatory framework for natural ventilation design affecting the health of residents, to identify the relationship between the main components of the indoor environmental quality (IEQ) and current building designs, and to propose improvements to the design standards or guidelines especially for those related to natural ventilation controls.
Design/methodology/approach
Building designs can influence the IEQ and therefore, legislation regulating such designs should be reviewed beforehand. Afterwards, site measurements to vacant residential building blocks on two different sites are carried out to collect radon levels contained in the air within the buildings. The major purpose of this measurement is to find out the relationship between radon concentration and residential building designs.
Findings
It is found that there is room for improvement in the building laws in Hong Kong regulating building designs which affect natural ventilation and IEQ.
Originality/value
This paper contributes to the understanding of the practical needs of the construction industry and may remedy any lack of consideration of commercial reality in the research process.
Details
Keywords
Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…
Abstract
Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.
Details
Keywords
K.C. LAM, S. THOMAS NG, TIESONG HU, MARTIN SKITMORE and S.O. CHEUNG
The selection criteria for contractor pre‐qualification are characterized by the co‐existence of both quantitative and qualitative data. The qualitative data is non‐linear…
Abstract
The selection criteria for contractor pre‐qualification are characterized by the co‐existence of both quantitative and qualitative data. The qualitative data is non‐linear, uncertain and imprecise. An ideal decision support system for contractor pre‐qualification should have the ability of handling both quantitative and qualitative data, and of mapping the complicated non‐linear relationship of the selection criteria, such that rational and consistent decisions can be made. In this research paper, an artificial neural network model was developed to assist public clients identifying suitable contractors for tendering. The pre‐qualification criteria (variables) were identified for the model. One hundred and twelve real pre‐qualification cases were collected from civil engineering projects in Hong Kong, and 88 hypothetical pre‐qualification cases were also generated according to the ‘If‐then’ rules used by professionals in the pre‐qualification process. The results of the analysis totally comply with current practice (public developers in Hong Kong). Each pre‐qualification case consisted of input ratings for candidate contractors' attributes and their corresponding pre‐qualification decisions. The training of the neural network model was accomplished by using the developed program, in which a conjugate gradient descent algorithm was incorporated for improving the learning performance of the network. Cross‐validation was applied to estimate the generalization errors based on the ‘re‐sampling’ of training pairs. The case studies show that the artificial neural network model is suitable for mapping the complicated non‐linear relationship between contractors' attributes and their corresponding pre‐qualification (disqualification) decisions. The artificial neural network model can be concluded as an ideal alternative for performing the contractor pre‐qualification task.
Details
Keywords
K.C. LAM, TIESONG HU, S.O. CHEUNG, R.K.K. YUEN and Z.M. DENG
Modelling of the multiproject cash flow decisions in a contracting firm facilitates optimal resource utilization, financial planning, profit forecasting and enables the inclusion…
Abstract
Modelling of the multiproject cash flow decisions in a contracting firm facilitates optimal resource utilization, financial planning, profit forecasting and enables the inclusion of cash‐flow liquidity in forecasting. However, a great challenge for contracting firm to manage his multiproject cash flow when large and multiple construction projects are involved (manipulate large amount of resources, e.g. labour, plant, material, cost, etc.). In such cases, the complexity of the problem, hence the constraints involved, renders most existing regular optimization techniques computationally intractable within reasonable time frames. This limit inhibits the ability of contracting firms to complete construction projects at maximum efficiency through efficient utilization of resources among projects. Recently, artificial neural networks have demonstrated its strength in solving many optimization problems efficiently. In this regard a novel recurrent‐neural‐network model that integrates multi‐objective linear programming and neural network (MOLPNN) techniques has been developed. The model was applied to a relatively large contracting company running 10 projects concurrently in Hong Kong. The case study verified the feasibility and applicability of the MOLPNN to the defined problem. A comparison undertaken of two optimal schedules (i.e. risk‐avoiding scheme A and risk‐seeking scheme B) of cash flow based on the decision maker's preference is described in this paper.
Details
Keywords
Hassam Waheed, Peter J.R. Macaulay, Hamdan Amer Ali Al-Jaifi, Kelly-Ann Allen and Long She
In response to growing concerns over the negative consequences of Internet addiction on adolescents’ mental health, coupled with conflicting results in this literature stream…
Abstract
Purpose
In response to growing concerns over the negative consequences of Internet addiction on adolescents’ mental health, coupled with conflicting results in this literature stream, this meta-analysis sought to (1) examine the association between Internet addiction and depressive symptoms in adolescents, (2) examine the moderating role of Internet freedom across countries, and (3) examine the mediating role of excessive daytime sleepiness.
Design/methodology/approach
In total, 52 studies were analyzed using robust variance estimation and meta-analytic structural equation modeling.
Findings
There was a significant and moderate association between Internet addiction and depressive symptoms. Furthermore, Internet freedom did not explain heterogeneity in this literature stream before and after controlling for study quality and the percentage of female participants. In support of the displacement hypothesis, this study found that Internet addiction contributes to depressive symptoms through excessive daytime sleepiness (proportion mediated = 17.48%). As the evidence suggests, excessive daytime sleepiness displaces a host of activities beneficial for maintaining mental health. The results were subjected to a battery of robustness checks and the conclusions remain unchanged.
Practical implications
The results underscore the negative consequences of Internet addiction in adolescents. Addressing this issue would involve interventions that promote sleep hygiene and greater offline engagement with peers to alleviate depressive symptoms.
Originality/value
This study utilizes robust meta-analytic techniques to provide the most comprehensive examination of the association between Internet addiction and depressive symptoms in adolescents. The implications intersect with the shared interests of social scientists, health practitioners, and policy makers.
Details
Keywords
Deepika Jindal, Peter Boxall, Gordon W. Cheung and Ann Hutchison
The authors examine the interactive effects of work engagement and work autonomy in enhancing job crafting behaviour and performance.
Abstract
Purpose
The authors examine the interactive effects of work engagement and work autonomy in enhancing job crafting behaviour and performance.
Design/methodology/approach
Dyadic data from a sample of 320 white-collar employees in an Indian manufacturer are analysed through structural equation modelling.
Findings
The level of job crafting is highest when both work engagement and work autonomy are high. Job crafting fully mediates the interactive effect of work engagement and autonomy on task performance and partially on contextual performance.
Practical implications
There is value in reviewing organisational constraints on employee autonomy to foster the ways in which highly motivated workers can craft their jobs and, thus, maximise their performance.
Originality/value
This study demonstrates the interactive effects of work engagement and autonomy in enhancing job crafting and, through this mechanism, employee performance.
Details
Keywords
Bo Xiong, Sidney Newton, Vera Li, Martin Skitmore and Bo Xia
The purpose of this paper is to present an approach to address the overfitting and collinearity problems that frequently occur in predictive cost estimating models for…
Abstract
Purpose
The purpose of this paper is to present an approach to address the overfitting and collinearity problems that frequently occur in predictive cost estimating models for construction practice. A case study, modeling the cost of preliminaries is proposed to test the robustness of this approach.
Design/methodology/approach
A hybrid approach is developed based on the Akaike information criterion (AIC) and principal component regression (PCR). Cost information for a sample of 204 UK school building projects is collected involving elemental items, contingencies (risk) and the contractors’ preliminaries. An application to estimate the cost of preliminaries for construction projects demonstrates the method and tests its effectiveness in comparison with such competing models as: alternative regression models, three artificial neural network data mining techniques, case-based reasoning and support vector machines.
Findings
The experimental results show that the AIC–PCR approach provides a good predictive accuracy compared with the alternatives used, and is a promising alternative to avoid overfitting and collinearity.
Originality/value
This is the first time an approach integrating the AIC and PCR has been developed to offer an improvement on existing methods for estimating construction project Preliminaries. The hybrid approach not only reduces the risk of overfitting and collinearity, but also results in better predictability compared with the commonly used stepwise regression.
Details
Keywords
This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper…
Abstract
This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper contains references to papers, conference proceedings and theses/dissertations on the subject that were published between 1977‐1998. The following topics are included: ceramics – material and mechanical properties in general, ceramic coatings and joining problems, ceramic composites, ferrites, piezoceramics, ceramic tools and machining, material processing simulations, fracture mechanics and damage, applications of ceramic/composites in engineering; glass – material and mechanical properties in general, glass fiber composites, material processing simulations, fracture mechanics and damage, and applications of glasses in engineering.
Details
Keywords
Shashank Gupta and Rachana Jaiswal
This study explores the factors influencing artificial intelligence (AI)-driven decision-making proficiency (AIDP) among management students, focusing on foundational AI…
Abstract
Purpose
This study explores the factors influencing artificial intelligence (AI)-driven decision-making proficiency (AIDP) among management students, focusing on foundational AI knowledge, data literacy, problem-solving, ethical considerations and collaboration skills. The research examines how these competencies enhance self-efficacy and engagement, with curriculum design, industry exposure and faculty support as moderating factors. This study aims to provide actionable insights for educational strategies that prepare students for AI-driven business environments.
Design/methodology/approach
The research adopts a hybrid methodology, integrating partial least squares structural equation modeling (PLS-SEM) with artificial neural networks (ANNs), using quantitative data collected from 526 management students across five Indian universities. The PLS-SEM model validates linear relationships, while ANN captures nonlinear complexities, complemented by sensitivity analyses for deeper insights.
Findings
The results highlight the pivotal roles of foundational AI knowledge, data literacy and problem-solving in fostering self-efficacy. Behavioral, cognitive, emotional and social engagement significantly influence AIDP. Moderation analysis underscores the importance of curriculum design and faculty support in enhancing the efficacy of these constructs. ANN sensitivity analysis identifies problem-solving and social engagement as the most critical predictors of self-efficacy and AIDP, respectively.
Research limitations/implications
The study is limited to Indian central universities and may require contextual adaptation for global applications. Future research could explore longitudinal impacts of AIDP development in diverse educational and cultural settings.
Practical implications
The findings provide actionable insights for curriculum designers, policymakers and educators to integrate AI competencies into management education. Emphasis on experiential learning, ethical frameworks and interdisciplinary collaboration is critical for preparing students for AI-centric business landscapes.
Social implications
By equipping future leaders with AI proficiency, this study contributes to societal readiness for technological disruptions, promoting sustainable and ethical decision-making in diverse business contexts.
Originality/value
To the author’s best knowledge, this study uniquely integrates PLS-SEM and ANN to analyze the interplay of competencies and engagement in shaping AIDP. It advances theoretical models by linking foundational learning theories with practical AI education strategies, offering a comprehensive framework for developing AI competencies in management students.
Details
Keywords
The advent of technology has propelled audit firms to incorporate AI-based audit services, bringing the relationship between audit clients and firms into sharper focus…
Abstract
Purpose
The advent of technology has propelled audit firms to incorporate AI-based audit services, bringing the relationship between audit clients and firms into sharper focus. Nonetheless, the understanding of how AI-based audit services affect this relationship remains sparse. This study strives to probe how an audit client's satisfaction with AI-based audit services influences their trust in audit firms. Identifying the variables affecting this trust, the research aspires to gain a deeper comprehension of the implications of AI-based audit services on the auditor-client relationship, ultimately aiming to boost client satisfaction and cultivate trust.
Design/methodology/approach
A conceptual framework has been devised, grounded in the client-company relationship model, to delineate the relationship between perceived quality, perceived value, attitude and satisfaction with AI-based audit services and their subsequent impact on trust in audit firms. The research entailed an empirical investigation employing Facebook ads, gathering 288 valid responses for evaluation. The structural equation method, utilized in conjunction with SPSS and Amos statistical applications, verified the reliability and overarching structure of the scales employed to measure these elements. A hybrid multi-analytical technique of structural equation modeling and artificial neural networks (SEM-ANN) was deployed to empirically validate the collated data.
Findings
The research unveiled a significant and positive relationship between perceived value and client satisfaction, trust and attitude towards AI-based audit services, along with the link between perceived quality and client satisfaction. The findings suggest that a favorable attitude and perceived quality of AI-based audit services could enhance satisfaction, subsequently augmenting perceived value and client trust. By focusing on the delivery of superior-quality services that fulfill clients' value expectations, firms may amplify client satisfaction and trust.
Research limitations/implications
Further inquiries are required to appraise the influence of advanced technology adoption within audit firms on client trust-building mechanisms. Moreover, an understanding of why the impact of perceived quality on perceived value proves ineffectual in the context of audit client trust-building warrants further exploration. In interpreting the findings of this study, one should consider the inherent limitations of the empirical analysis, inclusive of the utilization of Facebook ads as a data-gathering tool.
Practical implications
The research yielded insightful theoretical and practical implications that can bolster audit clients' trust in audit firms amid technological advancements within the audit landscape. The results imply that audit firms should contemplate implementing trust-building mechanisms by creating value and influencing clients' stance towards AI-based audit services to establish trust, particularly when vying with competing firms. As technological evolutions impinge on trustworthiness, audit firms must prioritize clients' perceived value and satisfaction.
Originality/value
To the researcher's best knowledge, no previous study has scrutinized the impact of satisfaction with AI-based audit services on cultivating audit client trust in audit firms, in contrast to past research that has focused on the auditors' trust in the audit client. To bridge these gaps, this study employs a comprehensive and integrative theoretical model.