Liping Zhang, Anli Tian, Chunxia Wang, Fushun Bai and Shaohai Fu
The purpose of this study is to prepare nanoscale copolymer-silicon dioxide (SiO2) dispersion for formulating textile printing white ink.
Abstract
Purpose
The purpose of this study is to prepare nanoscale copolymer-silicon dioxide (SiO2) dispersion for formulating textile printing white ink.
Design/methodology/approach
Nanoscale copolymer-SiO2 dispersion was prepared via miniemulsion polymerization. The miniemulsion formulation was optimized for preparing stable SiO2/O/W miniemulsion and nanoscale copolymer-SiO2 dispersion. The nanoscale copolymer-SiO2 was investigated by transmission electron microscope (TEM), X-ray diffraction (XRD), differential thermal gravity (DTG) and thermogravimetric analysis (TGA). The performance of white inks from this colorant was further investigated.
Findings
Nanoscale copolymer-SiO2 had a core-shell structure with about 45 nm encapsulated copolymer layer when it was synthesized under optimal miniemulsion formulation 60 per cent mass ratio of styrene (St) to KH570-SiO2, 5.0 per cent hexadecane to St and 2.0 per cent concentration of DNS-86. The nanoscale copolymer-SiO2 white ink had high thermal and centrifugal stability with high purity and color fastness.
Research limitations/implications
The miniemulsion polymerization conditions required a careful control before favorable results could be achieved.
Practical implications
The nanoscale copolymer-SiO2 dispersion and white ink prepared by this method showed excellent stability. This research could accelerate the textiles inkjet printing application.
Originality/value
The reactive stabilizer DNS-86 is innovatively introduced into the miniemulsion polymerization to improve the stability of the nanoscale copolymer-SiO2 dispersion. The white ink was formulated from nanoscale copolymer-SiO2 to improve the fastness of the printed fabrics.
Details
Keywords
Benjamin Tawiah, Liping Zhang, Anli Tian and Shai Shao Fu
The purpose of this paper is to colour aluminium pigment to the highest chroma using SiO2 and organic silane with dichlorotriazine reactive dye and investigate its reaction…
Abstract
Purpose
The purpose of this paper is to colour aluminium pigment to the highest chroma using SiO2 and organic silane with dichlorotriazine reactive dye and investigate its reaction mechanism, chemical stability and thermal properties to improve its applicability in surface coatings.
Design/methodology/approach
Aluminium pigment was encapsulated by the catalysed sol-gel method using SiO2, followed by modification with γ-glycidoxypropyltrimethoxysilane (GPTMS). Purified reactive dye (1-Amino-4-[3-(4,6-dichlorotriazin-2-ylamino)-4-sulfophenylamino]anthraquinone-2-sulfonic acid (X-BR)) was covalently immobilized onto modified SiO2 to obtain coloured aluminium pigment. The reaction mechanism, chemical stability and thermophysical properties were investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscope, transmission electron microscope and thermogravimetric analyses (TGA).
Findings
The results showed that X-BR was covalently attached to modified Al/SiO2 with maximum colour grafting of 95 per cent when the dosage of GPTMS and X-BR per weight of modified Al/SiO2 was 25 and 15 per cent, respectively, at pH 8.5 and a temperature of 40°C. The coloured aluminium pigment had good chemical stability with excellent anti-migration properties in many solvents.
Research limitations/implications
The organic silane used required a careful control of pH to ensure maximum colour grafting efficiency meanwhile other silanes with amine groups could also be used effectively with different kinds of colorants besides reactive dyes.
Practical implications
The method used is less cumbersome and provides a simple route to preparing coloured aluminium pigment.
Originality/value
The use of organic-inorganic SiO2/γ- GPTMS with purified reactive dye to covalently colour aluminium pigment to the highest chroma is novel and will help advance the frontiers of knowledge on coloration of aluminium pigments.
Details
Keywords
Yufei Xiu, Kezhong Wang, Chaoxia Wang, Kashif Javed, Shaohai Fu and Anli Tian
– The aim of this paper was to prepare a stable fluorescent disperse yellow paste by wet grinding process by adding naphthalene sulphonic derivative dispersing agent.
Abstract
Purpose
The aim of this paper was to prepare a stable fluorescent disperse yellow paste by wet grinding process by adding naphthalene sulphonic derivative dispersing agent.
Design/methodology/approach
The dispersants 2-naphthalenesulphonic acid (NNO), naphthalene-sulphonic acid (MF) and benzyl naphthalene sulphonate formaldehyde condensate (CNF) were used to disperse the yellow dye. The particle size of the paste was characterised by particle size analyser. The paste centrifugal stability, diffusion properties, morphology and thermal properties were also tested for assessing its stability which could be helpful to prepare inks with good stability.
Findings
The particle sizes of dye pastes with dispersing agent NNO, MF and CNF were 161.1, 150.0 and 136.0 nm, respectively, after grinding for 6 h. The dye paste grinded with dispersing agent CNF presented good centrifugal and thermal properties. TEM images demonstrated that the morphologies of dye pastes grinded with dispersing agent MF and CNF were homogeneous nearly spherical nanoparticle and rarely generated agglomeration and precipitation.
Originality/value
The paste used for aqueous inkjet ink exhibited excellent thermal stability.