Search results

1 – 4 of 4
Article
Publication date: 25 January 2024

Anil Kumar Inkulu and M.V.A. Raju Bahubalendruni

In the current era of Industry 4.0, the manufacturing industries are striving toward mass production with mass customization by considering human–robot collaboration. This study…

Abstract

Purpose

In the current era of Industry 4.0, the manufacturing industries are striving toward mass production with mass customization by considering human–robot collaboration. This study aims to propose the reconfiguration of assembly systems by incorporating multiple humans with robots using a human–robot task allocation (HRTA) to enhance productivity.

Design/methodology/approach

A human–robot task scheduling approach has been developed by considering task suitability, resource availability and resource selection through multicriteria optimization using the Linear Regression with Optimal Point and Minimum Distance Calculation algorithm. Using line-balancing techniques, the approach estimates the optimum number of resources required for assembly tasks operating by minimum idle time.

Findings

The task allocation schedule for a case study involving a punching press was solved using human–robot collaboration, and the approach incorporated the optimum number of appropriate resources to handle different types of proportion of resources.

Originality/value

This proposed work integrates the task allocation by human–robot collaboration and decrease the idle time of resource by integrating optimum number of resources.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 25 October 2021

Anil Kumar Gulivindala, M.V.A. Raju Bahubalendruni, Anil Kumar Inkulu, S.S. Vara Prasad Varupala and SankaranarayanaSamy K.

The purpose of this paper is to perform a comparative assessment on working of the existed subassembly identification (SI) methods, which are widely practiced during the product…

Abstract

Purpose

The purpose of this paper is to perform a comparative assessment on working of the existed subassembly identification (SI) methods, which are widely practiced during the product development stage and to propose an improved method for solving the SI problem in assembly sequence planning (ASP).

Design/methodology/approach

The cut-set method is found as a suitable method among various knowledge-based methods such as the theory of loops, theory of connectors and theory of clusters for the workability enhancement to meet the current requirements. Necessary product information is represented in the matrix format by replacing the traditional AND/OR graphs and the advanced predicates are included in the evaluation criteria.

Findings

The prominent methods in SI are followed a few of the predicates to avoid complexity in solution generation. The predicate consideration is found as the most influencing factor in eliminating the infeasible part combinations at SI. However, the quality of identified subassemblies without advanced predicates is not influencing the solution generation phase but practical applicability is affecting adversely.

Originality/value

The capability of performing SI by the cut-set method is improved to deal with the complex assembly configurations. The improved method is tested by applying on different assembly configurations and the effectiveness is compared with other existent methods of ASP along with the conventional method.

Details

Assembly Automation, vol. 41 no. 6
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 4 August 2021

Anil Kumar Inkulu, M.V.A. Raju Bahubalendruni, Ashok Dara and SankaranarayanaSamy K.

In the present era of Industry 4.0, the manufacturing automation is moving toward mass production and mass customization through human–robot collaboration. The purpose of this…

2304

Abstract

Purpose

In the present era of Industry 4.0, the manufacturing automation is moving toward mass production and mass customization through human–robot collaboration. The purpose of this paper is to describe various human–robot collaborative (HRC) techniques and their applicability for various manufacturing methods along with key challenges.

Design/methodology/approach

Numerous recent relevant research literature has been analyzed, and various human–robot interaction methods have been identified, and detailed discussions are made on one- and two-way human–robot collaboration.

Findings

The challenges in implementing human–robot collaboration for various manufacturing process and the challenges in one- and two-way collaboration between human and robot are found and discussed.

Originality/value

The authors have attempted to classify the HRC techniques and demonstrated the challenges in different modes.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 8 August 2023

Elisa Verna, Gianfranco Genta and Maurizio Galetto

The purpose of this paper is to investigate and quantify the impact of product complexity, including architectural complexity, on operator learning, productivity and quality…

Abstract

Purpose

The purpose of this paper is to investigate and quantify the impact of product complexity, including architectural complexity, on operator learning, productivity and quality performance in both assembly and disassembly operations. This topic has not been extensively investigated in previous research.

Design/methodology/approach

An extensive experimental campaign involving 84 operators was conducted to repeatedly assemble and disassemble six different products of varying complexity to construct productivity and quality learning curves. Data from the experiment were analysed using statistical methods.

Findings

The human learning factor of productivity increases superlinearly with the increasing architectural complexity of products, i.e. from centralised to distributed architectures, both in assembly and disassembly, regardless of the level of overall product complexity. On the other hand, the human learning factor of quality performance decreases superlinearly as the architectural complexity of products increases. The intrinsic characteristics of product architecture are the reasons for this difference in learning factor.

Practical implications

The results of the study suggest that considering product complexity, particularly architectural complexity, in the design and planning of manufacturing processes can optimise operator learning, productivity and quality performance, and inform decisions about improving manufacturing operations.

Originality/value

While previous research has focussed on the effects of complexity on process time and defect generation, this study is amongst the first to investigate and quantify the effects of product complexity, including architectural complexity, on operator learning using an extensive experimental campaign.

Details

Journal of Manufacturing Technology Management, vol. 34 no. 9
Type: Research Article
ISSN: 1741-038X

Keywords

1 – 4 of 4