Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 26 November 2024

Aneel Manan, Zhang Pu, Jawad Ahmad and Muhammad Umar

Rapid industrialization and construction generate substantial concrete waste, leading to significant environmental issues. Nearly 10 billion metric tonnes of concrete waste are…

30

Abstract

Purpose

Rapid industrialization and construction generate substantial concrete waste, leading to significant environmental issues. Nearly 10 billion metric tonnes of concrete waste are produced globally per year. In addition, concrete also accelerates the consumption of natural resources, leading to the depletion of these natural resources. Therefore, this study uses artificial intelligence (AI) to examine the utilization of recycled concrete aggregate (RCA) in concrete.

Design/methodology/approach

An extensive database of 583 data points are collected from the literature for predictive modeling. Four machine learning algorithms, namely artificial neural network (ANN), random forest (RF), ridge regression (RR) and least adjacent shrinkage and selection operator (LASSO) regression (LR), in predicting simultaneously concrete compressive and tensile strength were evaluated. The dataset contains 10 independent variables and two dependent variables. Statistical parameters, including coefficient of determination (R2), mean square error (MSE), mean absolute error (MAE) and root mean square error (RMSE), were employed to assess the accuracy of the algorithms. In addition, K-fold cross-validation was employed to validate the obtained results, and SHapley Additive exPlanations (SHAP) analysis was applied to identify the most sensitive parameters out of the 10 input parameters.

Findings

The results indicate that the RF prediction model performance is better and more satisfactory than other algorithms. Furthermore, the ANN algorithm ranks as the second most accurate algorithm. However, RR and LR exhibit poor findings with low accuracy. K-fold cross-validation was successfully applied to validate the obtained results and SHAP analysis indicates that cement content and recycled aggregate percentages are the effective input parameter. Therefore, special attention should be given to sensitive parameters to enhance the concrete performance.

Originality/value

This study uniquely applies AI to optimize the use of RCA in concrete production. By evaluating four machine learning algorithms, ANN, RF, RR and LR on a comprehensive dataset, this study identities the most effective predictive models for concrete compressive and tensile strength. The use of SHAP analysis to determine key input parameters and K-fold cross-validation for result validation adds to the study robustness. The findings highlight the superior performance of the RF model and provide actionable insights into enhancing concrete performance with RCA, contributing to sustainable construction practice.

Access Restricted. View access options
Article
Publication date: 1 July 2024

Aneel Manan, Pu Zhang, Shoaib Ahmad and Jawad Ahmad

The purpose of this study is to assess the incorporation of fiber reinforced polymer (FRP) bars in concrete as a reinforcement enhances the corrosion resistance in a concrete…

143

Abstract

Purpose

The purpose of this study is to assess the incorporation of fiber reinforced polymer (FRP) bars in concrete as a reinforcement enhances the corrosion resistance in a concrete structure. However, FRP bars are not practically used due to a lack of standard codes. Various codes, including ACI-440-17 and CSA S806-12, have been established to provide guidelines for the incorporation of FRP bars in concrete as reinforcement. The application of these codes may result in over-reinforcement. Therefore, this research presents the use of a machine learning approach to predict the accurate flexural strength of the FRP beams with the use of 408 experimental results.

Design/methodology/approach

In this research, the input parameters are the width of the beam, effective depth of the beam, concrete compressive strength, FRP bar elastic modulus and FRP bar tensile strength. Three machine learning algorithms, namely, gene expression programming, multi-expression programming and artificial neural networks, are developed. The accuracy of the developed models was judged by R2, root means squared and mean absolute error. Finally, the study conducts prismatic analysis by considering different parameters. including depth and percentage of bottom reinforcement.

Findings

The artificial neural networks model result is the most accurate prediction (99%), with the lowest root mean squared error (2.66) and lowest mean absolute error (1.38). In addition, the result of SHapley Additive exPlanation analysis depicts that the effective depth and percentage of bottom reinforcement are the most influential parameters of FRP bars reinforced concrete beam. Therefore, the findings recommend that special attention should be given to the effective depth and percentage of bottom reinforcement.

Originality/value

Previous studies revealed that the flexural strength of concrete beams reinforced with FRP bars is significantly influenced by factors such as beam width, effective depth, concrete compressive strength, FRP bars’ elastic modulus and FRP bar tensile strength. Therefore, a substantial database comprising 408 experimental results considered for these parameters was compiled, and a simple and reliable model was proposed. The model developed in this research was compared with traditional codes, and it can be noted that the model developed in this study is much more accurate than the traditional codes.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 2 of 2
Per page
102050