Search results

1 – 2 of 2
Per page
102050
Citations:
Loading...
Access Restricted. View access options
Article
Publication date: 4 September 2017

Matthias Jüttner, Andreas Pflug, Markus Wick and Wolfgang M. Rucker

Multiphysics problems are solved either with monolithic or segregated approaches. For accomplishing contrary discretisation requirements of the physics, disparate meshes are…

62

Abstract

Purpose

Multiphysics problems are solved either with monolithic or segregated approaches. For accomplishing contrary discretisation requirements of the physics, disparate meshes are essential. This paper is comparing experimental results of different interpolation methods for a segregated coupling with monolithic approaches, implemented using a global and a local nearest neighbour method. The results show the significant influence of discretisation for multiphysics simulation.

Design/methodology/approach

Applying disparate meshes to the monolithic as well as the segregated calculation of finite element problems and evaluating the related numerical error is content of the contribution. This is done by an experimental evaluation of a source and a material coupling applied to a multiphysics problem. After an introduction to the topic, the evaluated multiphysics model is described based on two bidirectional coupled problems and its finite element representation. Afterwards, the considered methods for approximating the coupling are introduced. Then, the evaluated methods are described and the experimental results are discussed. A summary concludes this work.

Findings

An experimental evaluation of the numerical errors for different multiphysics coupling methods using disparate meshes is presented based on a bidirectional electro-thermal simulation. Different methods approximating the coupling values are introduced and challenges of applying these methods are given. It is also shown, that the approximation of the coupling integrals is expensive. Arguments for applying the different methods to the monolithic and the segregated solution strategies are given and applied on the example. The significant influence of the mesh density within the coupled meshes is shown. Since the projection and the interpolation methods do influence the result, a careful decision is advised.

Originality/value

In this contribution, existing coupling methods are described, applied and compared on their application for coupling disparate meshes within a multiphysics simulation. Knowing their performance is relevant when deciding for a monolithic or a segregated calculation approach with respect to physics dependent contrary discretisation requirements. To the authors’ knowledge, it is the first time these methods are compared with a focus on an application in multiphysics simulations and experimental results are discussed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Access Restricted. View access options
Article
Publication date: 11 July 2019

Marta Cianfrini, Massimo Corcione, Alessandro Quintino and Vincenzo Andrea Spena

The purpose of this study is to investigate numerically the laminar natural convection from a pair of horizontal heated cylinders, set one above the other, inside a water-filled…

83

Abstract

Purpose

The purpose of this study is to investigate numerically the laminar natural convection from a pair of horizontal heated cylinders, set one above the other, inside a water-filled rectangular enclosure cooled at sides, with perfectly insulated top and bottom walls, through a control-volume formulation of the finite-difference method, with the main aim to evaluate the effects of the center-to-center cylinder spacing, the size of the cavity and the temperature difference imposed between the cylinders and the cavity sides.

Design/methodology/approach

The system of the conservation equations of the mass, momentum and energy, expressed in dimensionless form, is solved by a specifically developed computer code based on the SIMPLE-C algorithm for the pressure-velocity coupling. Numerical simulations are executed for different values of the Rayleigh number based on the cylinder diameter, as well as the center-to-center cylinder spacing and the width of the cavity normalized by the cylinder diameter.

Findings

The main results obtained may be summarized as follows: the existence of an optimum cylinder spacing for maximum heat transfer rate is found at any investigated Rayleigh number; as a consequence of the downstream confinement, a periodic flow arises at sufficiently high Rayleigh numbers; the amplitude of oscillation of the periodic heat transfer performance of the cylinder array decreases as the cylinder spacing is increased and the cavity width is decreased, whereas the frequency of oscillations remains almost the same; at very small cavity widths, a transition from the typical two-cell to a four-cell flow pattern occurs.

Originality/value

The computational code used in the present study incorporates an original composite polar/Cartesian discretization grid scheme.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 2 of 2
Per page
102050