Search results
1 – 2 of 2Darko Belavic, Andraž Bradeško and Hana Uršič
The purpose of this study is to design, fabricate and investigate low-temperature co-fired ceramic (LTCC) structures with integrated microfluidic elements. Special attention is…
Abstract
Purpose
The purpose of this study is to design, fabricate and investigate low-temperature co-fired ceramic (LTCC) structures with integrated microfluidic elements. Special attention is paid to the study of fluid properties of micro-channels and microvalves, which are important constitutive parts of both, microfluidic systems and individual microfluidic devices.
Design/methodology/approach
Several test patterns of fluid channels with different geometry and different types of valves were designed and realized in LTCC technology. All test structures were tested under the flow of two fluids (liquids): water and isopropyl alcohol. Flow rates at different applied pressure were measured and hydrodynamic resistance and diode effect were calculated.
Findings
The investigation of the channels showed that viscosity of fluidic media has significant influence on the hydrodynamic resistance in channels with rectangular cross-section, while this effect is small on channels with square cross-section. The viscosity also has a decisive influence on the diode effect of different shape of valves, and therefore, it is important in the selection of the valve in practical applications.
Research limitations/implications
In this work, the investigation of hydrodynamic resistance of channels and diode effect of passive valves is limited on selected geometry and only on two fluidic media and two applied pressures. All these and some other parameters have a significant influence on fluidic properties, but this will be the topic of the next research work, which will be supported by numerical modelling.
Practical implications
The presented results are useful in the future designing process of LTCC-based microfluidic devices and systems.
Originality/value
Microfluidic in the LTCC structures is an unconventional use of this technology. Therefore, the fluid properties are relatively unsearched. On the other hand, the global use of microfluidic devices and systems is growing rapidly in various applications. They are mostly made by polymer materials, however, in more demanding applications; ceramic is a useful alternative.
Details
Keywords
Darko Belavič, Andraž Bradeško, Tomaz Kos and Tadej Rojac
In this contribution, the design and integration of a piezoelectric vibrating device into low-temperature, co-fired ceramic (LTCC) structures are presented and discussed. The…
Abstract
Purpose
In this contribution, the design and integration of a piezoelectric vibrating device into low-temperature, co-fired ceramic (LTCC) structures are presented and discussed. The mechanical vibration of the diaphragm was stimulated with a piezoelectric actuator, which was integrated onto the diaphragm. Three different methods for the integration were designed, fabricated and evaluated.
Design/methodology/approach
The vibrating devices were designed as an edge-clamped diaphragm with an integrated piezoelectric actuator at its centre, whose role is to stimulate the vibration of the diaphragm via the converse piezoelectric effect. The design and feasibility study of the vibrating devices was supported by analytical methods and finite-element analyses.
Findings
The benchmarking of the ceramic vibrating devices showed that the thick-film piezoelectric actuator responds weakly in comparison with both the bulk actuators. On the other hand, the thick-film actuator has the lowest dissipation factor and it generates the largest displacement of the diaphragm with the lowest driving voltage. The resonance frequency of the vibrating device with the thick-film actuator is the most sensitive for an applied load (i.e. mass or pressure).
Research limitations/implications
Research activity includes the design and the fabrication of a piezoelectric vibrating device in the LTCC structure. The research work on the piezoelectric properties of integrated piezoelectric actuators was limited.
Practical implications
Piezoelectric vibrating devices were used as pressure sensors.
Originality/value
Piezoelectric vibrating devices could be used not only for pressure sensors but also for other type of sensors and detectors and for microbalances.
Details