Anastasios Zavos and Pantelis Nikolakopoulos
Compression rings are the main sources of frictional losses in internal combustion engines. The present paper aims to present a thermo-mixed hydrodynamic analysis for coated top…
Abstract
Purpose
Compression rings are the main sources of frictional losses in internal combustion engines. The present paper aims to present a thermo-mixed hydrodynamic analysis for coated top compression rings. To understand the coating effects, the main tribological parameters are investigated into a ring-cylinder conjunction in a motorbike engine. Furthermore, flow simulations have been carried out on how different worn profiles on the cylinder inner liner affects friction, lubricant film and localized contact deformation of the coated compression rings.
Design/methodology/approach
In this paper, the basic geometrical dimensions of the top compression ring-cylinder system are obtained from a real motorbike engine. A 2D axisymmetric CFD/FLOTRAN model is created for coated compression rings. Flow simulations are performed by solving the Navier-Stokes and the energy equations. The load capacity of the asperities is also taken into account by Greenwood and Tripp contact model. Realistic boundary conditions are imposed to simulate the in-plane ring motion. The simulation model is validated with analytical and experimental data from the literature. Under thermal considerations, the contribution of worn cylinder profiles in conjunction with different coated compression rings is presented.
Findings
This research shows that because of thermal effects, the boundary friction is higher at reversals and the viscous friction is lower because of reduced oil viscosity. As regards to the isothermal case, the viscous friction is greater because of a higher lubricant viscosity. In the case of chromium-plated ring, boundary friction was 16 per cent lower than a grey cast iron ring taking into account thermal effects. Regarding the localized contact deformation, the coated compression rings showed lower values under different worn cylinder shapes. In particular, hard wear-resistant (Ni-Cr-Mo) coating showed the slighter local deformation. Therefore, the worn cylinder profiles promote boundary/mixed lubrication regime, whereas the lobed profile of cylinder inner liner becomes more wavy.
Originality/value
The solution of the thermo-mixed lubrication model, concerning the piston ring and worn cylinder tribo pair by taking into account the coating of the top compression ring.
Details
Keywords
Pantelis G. Nikolakopoulos, Kyriakos Grigoriadis and Anastasios Zavos
The purpose of this paper is to focus on the creation of an isothermal elastic ring-liner model to highlight, through stresses, the occurrence of the plastic deformation in…
Abstract
Purpose
The purpose of this paper is to focus on the creation of an isothermal elastic ring-liner model to highlight, through stresses, the occurrence of the plastic deformation in certain crank angles under extreme dry lubrication conditions.
Design/methodology/approach
The stresses that are exported from this analysis are pointing out not only the necessity for an elastoplastic model to be created, but also the importance of predicting the correct friction coefficient, as pointed out by both the contact surface stress and that in depth of the two bodies in contact.
Findings
The comparison between the finite element model and the adhesion mathematical model of Johnson, Kendall and Roberts seals the importance to calculate the interaction forces, acting on the common solid surface, in the pursuit of defining a propriate contact patch. Additionally, a three-dimensional ring model is built, highlighting the importance of the modeling surface’s micro asperities for a solid stress analysis. Also, numerical experiments are conducted, in contact with the cylinder and a piston ring made of an iron alloy and of two different plating materials, such us Chromium (Cr) and Chromium‒Nickel Alloy (CrN). The ability to calculate the stress concentration factor is also described.
Originality/value
A three-dimensional ring model is built, highlighting the importance of the modeling surface’s micro asperities for a solid stress analysis. Also, numerical experiments are conducted, in contact with the cylinder and a piston ring made of an iron alloy and of two different plating materials, such us Chromium (Cr) and Chromium‒Nickel Alloy (CrN). The ability to calculate the stress concentration factor is also described.
Details
Keywords
Pantelis G. Nikolakopoulos, Anastasios Zavos and Dimitrios A. Bompos
Continuous on-line monitoring of structural integrity are in priority in many engineering fields such as aerospace, automotive, civilian structures, and industrial applications…
Abstract
Purpose
Continuous on-line monitoring of structural integrity are in priority in many engineering fields such as aerospace, automotive, civilian structures, and industrial applications. Of all these possible applications, the aerospace industry has one of the highest payoffs. Possible damage can lead to catastrophic failures and costly inspections. On the other hand, processing a signal consists of important feature from sensors measurements to reach the considered target. Typically, the sensors translate a physical phenomenon from one or many sources in temporal variations or in spatial variations. The purpose of this paper is to investigate damages, in terms of suddenly screw removal or in a small cut, detection in vibrating (clamped-free) aluminum beam structures using the empirical mode decomposition (EMD) method along with the Hilbert-Huang transformation (HHT). The perspective is to identify very small defects in real aircraft structures.
Design/methodology/approach
The proposed method deals with a new time-frequency signal processing analysis tool, for damages detection in a vibrating plate. An experimental test ring is used in order to excite a clamped-free aluminum plate. Two types of excitations are used. The first one is a harmonic excitation and the second one is a random excitation provided by an impact hammer. A hole and its filled by a screw with mass of 0.2 g, and a small cut is created, simulating a cut creation, are produced afterword, and the HHT is used in order to arise the developed oscillations, and to reveal hidden reflections in the data and to provide a high-resolution energy-time frequency spectrum.
Findings
The major finding was the clear amplitude increment either for screw removal or for cut creation, using the EMD process with the HHT, giving the possibility to detect them.
Originality/value
The use of the HHT to detect, using an experimental procedure, two different defects: a suddenly screw removal and a cut creation, in a clamped-free beam, excited by non-stationary and non-linear signals.
Details
Keywords
Anastasios Zavos and Pantelis George Nikolakopoulos
The purpose of this paper is to review and to provide a dipper understanding of what happens to piston rings and cylinder surfaces when manufacturing errors depicted, such as…
Abstract
Purpose
The purpose of this paper is to review and to provide a dipper understanding of what happens to piston rings and cylinder surfaces when manufacturing errors depicted, such as waviness and straightness. The mechanism of friction and the piston ring structural integrity, due to the surface irregularities, are analyzed either for smooth ring surface or for artificial textured, while piston ring floats into the piston groove or not.
Design/methodology/approach
In this work two tribological models of a piston ring- cylinder package are presented using CFD analysis. Initially, the piston ring is considered as a secured ring in the groove of piston (secured ring) while in second model, the piston ring floats into the piston groove (free ring).
Findings
Increasing the number of waves across the piston ring thickness, the structural integrity of the ring is strongly influenced. Piston ring with surface texturing reduces the mean friction force, under the consideration of cylinder straightness. The gas leaks due to existence of the ring gap, affects significantly the maximum mechanical stresses.
Originality/value
The novelty of this paper is the analysis of manufacturing errors, such as waviness and straightness either for smooth or for artificial textured piston ring. In particular, the piston ring structural integrity investigated while chamber gas pressure leaks through the ring gap or not. The number of the waves, their amplitude and the fluid velocity are also taken into consideration.